• 제목/요약/키워드: propranolol

검색결과 296건 처리시간 0.025초

Comparison of Inodilator Effect of Higenamine, YS49, YS51, Tetrahydroisoquinoline Analogs, and Dobutamine in the Rat

  • Chong, Won-Seog;Lee, Young-Soo;Kang, Young-Jin;Lee, Duck-Hyung;Ryu, Jae-Chun;Yun-Choi, Hye-Sook;Chang, Ki-Churl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제2권3호
    • /
    • pp.323-330
    • /
    • 1998
  • Tetrahydroisoquinoline (THI) alkaloids can be considered as cyclized derivatives of simple phenylethylamines. Many of them, especially with 6,7-disubstitution, demonstrate a relatively high affinity for catecholamines. Present study examines the pharmacological action of limited series of THI, using rats' isolated atria and aorta. In addition, a $[^3H]$ prazosin displacement binding study with THI compounds was performed, using rat brain homogenates to investigate whether these probes have ?${\alpha}$-adrenoceptor affinity. We also compared the vascular relaxation potency of these probes with dobutamine. YS 49, YS 51, higenamine and dobutamine, concentration-dependently, relaxed endothelium-denuded rat thoracic aorta precontracted with phenylephrine (PE, 0.1 ${\mu}M$) in which $pEC_{50}$ were $5.56{\pm}0.32$ and $5.55{\pm}0.21$, $5.99{\pm}1.16$ and $5.57{\pm}0.34$, respectively. These probes except higenamine also relaxed KCl (65.4 mM)-contracted aorta. In isolated rat atria, all THIs and dobutamine increased heart rate and contractile force. In the presence of propranolol, the concentration response curves of YS 49 and YS 51 shifted to the right and resulted in $pA_2$ values of $8.07{\pm}0.84$ and $7.93{\pm}0.11$, respectively. The slope of each compound was not deviated from unity, indicating that these chemicals are highly competitive at the cardiac ?${\beta}-adrenoceptors$. YS 49, YS 51, and higenamine showed ?${\alpha)-adrenoceptor$ affinity in rat brain, in which the dissociation constant $(K_i)$ was 2.75, 2.81, and 1.02 ${\mu}M$, respectively. It is concluded, therefore, that THI alkaloids have weak affinity to ${\alpha)_1-adrenoceptor$ in rat aorta and brain, respectively, while these probes show relatively high affinity for cardiac ${\beta}-adrenoceptors$. Thus, these chemicals may be useful in the treatment of congestive heart failure.

  • PDF

'2019 한국형 조현병 약물치료 지침서'에 따른 조현병에서 동반증상 및 부작용의 치료 (Korean Treatment Guideline on Pharmacotherapy of Co-existing Symptoms and Antipsychotics-related Side Effects in Patients with Schizophrenia)

  • 윤제연;이정석;강시현;남범우;이승재;이승환;최준호;김찬형;정영철
    • 대한조현병학회지
    • /
    • 제22권2호
    • /
    • pp.21-33
    • /
    • 2019
  • Objectives: The current study covers a secondary revision of the guidelines for the pharmacotherapy of schizophrenia issued by the Korean Medication Algorithm for Schizophrenia (KMAP-SCZ) 2001, specifically for co-existing symptoms and antipsychotics-related side-effects in schizophrenia patients. Methods: An expert consensus regarding the strategies of pharmacotherapy for positive symptoms of schizophrenia, co-existing symptoms of schizophrenia, and side-effect of antipsychotics in patients with schizophrenia was retrieved by responses obtained using a 30-item questionnaire. Results: For the co-existing symptoms, agitation could be treated with oral or intramuscular injection of benzodiazepine or antipsychotics; depressive symptoms with atypical antipsychotics and adjunctive use of antidepressant; obsessive-compulsive symptoms with selective serotonin reuptake inhibitors and antipsychotics other than clozapine and olanzapine; negative symptoms with atypical antipsychotics or antidepressants; higher risk of suicide with clozapine; comorbid substance abuse with use of naltrexone or bupropion/varenicline, respectively. For the antipsychotics-related side effects, anticholinergics (extrapyramidal symptom), propranolol and benzodiazepine (akathisia), topiramate or metformin (weight gain), change of antipsychotics to aripiprazole (hyperprolactinemia and prolonged QTc) or clozapine (tardive dyskinesia) could be used. Conclusion: Updated pharmacotherapy strategies for co-existing symptoms and antipsychotics-related side effects in schizophrenia patients as presented in KMAP-SCZ 2019 could help effective clinical decision making of psychiatrists as a preferable option.

여뀌섭취가 반추수에 비치는 임상병리학적 영향 (Clinicopathological Effects of Waterpepper (Persicaria hydropiper) on Ruminants)

  • 조명래;한홍율
    • 한국임상수의학회지
    • /
    • 제6권2호
    • /
    • pp.227-259
    • /
    • 1989
  • Waterpepper is a weed which grows on damp soil. especially near swamps, and in shallow water of ponds and ditches. It Is widespread throughout the country In abundant colonies. In the present experiments, possible toxic effects of waterpepper were investigated in ruminants. Pour cows were fed waterpepper ad libitum or by force in the from of green forage, hay and/or powder, 8 goats were administered in the form of methanol extract, and 4 goats, crude juice, into the lumen. Clinical signs were examined as well as urinalysis, hematology, serum chemical analysis, pH/blood gas analysis and chclinesterase activities following administration of waterpepper. Six goats which were administered the methanol extract or crude juice were sacrificed for pathological examinations., In addition to the clini copathological examinations, the chemical constituents of waterpepper were qualitively analyzed from the methanol extract and the Effects of the waterpepper crude juice were examined on the motility of rabbit duodenum and uterus. It is revealed that waterpepper contains steroids, terpenoids, flavonoids, tannin and essential oils in the methanol extract and nitrates in the crude juice. The crude juice of waterpepper relaxed the rabbit uterine and duodenal smooth muscles. The constraction of duodenum by acetylcholine or BaCl$_2$ were partially inhibited by pretreatment of the crude juice. However, the relaxation of duodenum by the crude juice was not blocked by the pretreatments of phenoxybenzamlne, propranolol, cocaine, reserpine and tetrodotoxin. The constituents of waterpepper to evoke elaxation of duodenal smooth muscle were stable to heat. The cows administered waterpepper showed common clinical symptoms such as acrid expression, restlessness, dullness, inappetence, anorexia, severe diarrhea, mild bloat and left displacement of abomasum, while bloody feces was shown in a cow. The goats administered the mothanol extract showed common clinical signs such as acrid expression, restlessness, dullness, inappetence and soft feces, while bloody feces was shown in a goat, A goat adminstered the crude juice showde bloody feces and diarrhea. Respiratory rates and heart beats were increased along with diarrhea in the experimental cows. The erythrocyte counts and MCHC were decreased whereas PCV, MCV and neutrophils were increased in the cows administered waterpepper. In goats administered methanol extract, there were decreases in erythrocytes, PCV and hemoglobin content, and an increase in MCHC. The goats ingester with the crude juice showed negligible changes in hematologic values compared with control group which was administered the same amount of water instead of the crude juice. The contents of serum calcium, Inorganic phosphorus, magnesium, Iron, glucose, cholesterol, total protein, triglycerides and phospholipids were tended to decrease in cows. In goats serum iron, glucose, triglycerides, cholesterol, BUN and phospholipids content were decreased while the content of sodium and chloride were increased after administration of the methamol extract The goats ingested with the crude juice did not show significant changes in serum chemical analysis. Even though there were some pathological findings such as hyperemia in the small intestines and kidneys and swelling of liver parenchymal cells, the values of serum AST, ALT, LDH, alkaline phosphatase, total bilirubin and creatinine did not change significantly. While proteins, hemoglobin and blood were detected in the urine of cows, urine pH, ketone bodies, glucose, bilirubin and urobilinogen content were normal or undetected. There were no significant changes in pH/bolld gas analysis data of cows and cholinesterase activities of plasma and erythrocytes of cows and goats ingested with waterpepper or the methanol extract. It is concluded that waterpepper irritates the gatrointestinal system, causes abdominal pain, relaxes the gastrointestinal smooth muscle and dilatates blood vessels supplied to the system. The irritation and relaxation may lead to abnormal fermentation, maldigestion and malabsorption of nutrients and result in diarrhea, body feces, mild bloat and left displacement of abomasum.

  • PDF

Catecholamines에 관(關)하여 -제4편(第四編) : 심실전동발생(心室顫動發生)에 있어서의 catecholamines의 의의(意義)- (Role of Catecholamines in Ventricular Fibrillation)

  • 이우주
    • 대한약리학회지
    • /
    • 제19권1호
    • /
    • pp.15-35
    • /
    • 1983
  • Although it has been well known that ventricular fibrillation is the most important complication during hypothermia, much investigation has failed to show the exact nature of the etiology of ventricular fibrillation. Recently, there has been considerable research on the relationship between sympathetic activity and ventricular fibrillation under hypothermia. Cardiac muscle normally contains a certain amount of norepinephrine and the dramatic effect of this catecholamines on the cardiac muscle is well documented. It is, therefore, conceivable that cardiac catecholamines might exert an influence on the susceptibility of heart muscle to tachycardia, ventricular fibrillation and arrhythmia, under hypothermia. Hypothermia itself is stress enough to increase tonus of sympatheticoadrenal system. The normal heart is supplied by an autonomic innervation and is subjected to action of circulating catecholamines which may be released from the heart. If the reaction of the heart associated with a variable amount of cardiac catecholamines is. permitted to occur in the induction of hypothermia, the action of this agent on the heart has not to be differentiated from the direct effects of cooling. The studies presented in this paper were designed to provide further information about the cardio-physiological effects of reduced body temperature, with special reference to the role of catecholamines in ventricular fibrillation. Healthy cats, weighing about 3 kg, were anesthetized with pentobarbital(30 mg/kg) intraperitoneally. The trachea was intubated and the endotracheal tube was connected to a C.F. Palmer type A.C. respirator. Hypothermia was induced by immersing the cat into a ice water tub and the rate of body temperature lowering was $1^{\circ}C$ per 5 to 8 min. Esophageal temperature and ECG (Lead II) were simultaneously monitored. In some cases the blood pH and serum sodium and potassium were estimated before the experiment. After the experiment the animals were killed and the hearts were excised. The catecholamines content of the cardiac muscle was measured by the method of Shore and Olin (1958). The results obtained are summarized as follows. 1) In control animal the heart rate was slowed as the temperature fell and the average pulse rates of eight animals were read 94/min at $31^{\circ}C$, 70/min at $27^{\circ}C$ and 43/min at $23^{\circ}C$ if esophageal temperature. Ventricular fibrillation was occurred with no exception at a mean temperature of $20.3^{\circ}C(21-l9^{\circ}C)$. The electrocardiogram revealed abnormal P waves in each progressive cooling of the heart. there was, ultimately, a marked delay in the P-R interval, QRS complex and Q-T interval. Inversion of the T waves was characteristic of all animals. The catecholamines content of the heart muscle excised immediately after the occurrence of ventricular fibrillation was about thirty percent lower than that of the pre-hypothermic heart, that is, $1.0\;{\mu}g/g$ wet weight compared to the prehypothermic value of $1.41\;{\mu}g/g$ wet weight. The changes of blood pH, serum sodium and potassium concentration were not remarkable. 2) By the adrenergic receptor blocking agent, DCI(2-3 mg/kg), given intramuscularly thirty minutes before hypothermia, ventricular fibrillation did not occur in one of five animals when their body temperature was reduced even to $16^{\circ}C$. These animals succumbed at that low temperature, and the changes of heart rate and loss of myocardial catecholamines after hypothermia were similar to those of normal animals. The actual effect of DCI preventing the ventricular fibrillation is not predictable. 3) Administration of reserpine(1 mg/kg, i.m.) 24 hours Prior to hypothermia disclosed reduced incidence of ventricular fibrillation, that is, six of the nine animals went into fibrillation at an average temperature of $19.6^{\circ}C$. By reserpine myocardial catecholamines content dropped to $0.045\;{\mu}g/g$ wet weight. 4) Bretylium pretreatment(20 mg/kg, i.m.), which blocks the release of catecholamines, Prevented the ventricular fibrillation under hypothermia in four of the eight cats. The pulse rate, however, was approximately the same as control and in some cases was rather slower. 5) Six cats treated with norepinephrine(2 mg/kg, i.m.) or DOPA(50 mg/kg) and tranylcypromine(10 mg/kg), which tab teen proved to cause significant increase in the catecholamines content of the heart muscle, showed ventricular fibrillation in all animals under hypothermia at average temperature of $21.6^{\circ}C$ and the pulse rate increased remarkably as compared with that of normal. Catecholamines content of cardiac muscle of these animals markedly decreased after hypothermia but higher than control animals. 6) The functional refractory periods of isolated rabbit atria, determined by the paired stimulus technique, was markedly shortened by administration of epinephrine, norepinephrine and isoproterenol. 7) Adrenergic beta-blocking agents, such as pronethalol, propranolol and sotalol(MJ-1999), inhibited completely the shortening of refractory period induced by norepinephrine. 8) Pretreatment with either phenoxftenbamine or phentolamine, an adrenergic alphatlocking agent, did not modify the decrease in refractory period induced by norepinephrine. From the above experiment it is possible to conclude that catecholamines play an important role in producing ventricular fibrillation under hypothermia. The shortening of the refractorf period of cardiac muscle induced by catecholamines mar be considered as a partial factor in producing ventriculr fibrillaton and to be mediated by beta-adrenergic receptor.

  • PDF

뇌실내 TFMPP가 가토신장기능에 미치는 효과 (Effects of Intracerebroventricular TFMPP on Rabbit Renal Function)

  • 임영채;최종범;김경근;국영종
    • 대한약리학회지
    • /
    • 제28권2호
    • /
    • pp.137-146
    • /
    • 1992
  • 신장기능조절에 있어서 중추 tryptamine계가 관련되어 있으며, $5-HT_1$수용체는 이뇨적인 역할을 하고 있는 반면에 $5-HT_2$$5-HT_3$수용체는 항이뇨적인 영향을 미치고 있음이 밝혀진 바 있다. 또한 $5-HT_1$수용체도 단일하지 않고 여러 subtype가 존재함이 알려져 있다. $5-HT_{1A}$수용체의 역할에 관해서는 신기능에 이뇨적인 영향을 미치고 있음이 시사된 바 있다. 본 연구에서는 중추 tryptamine성 신기능 조절에 있어서 $5-HT_{1B}$수용체의 역할을 구명하고자 하였다. 선택적 $5-HT_{1B}$ agonist인 TFMPP $8{\sim}750\;{\mu}g/kg$을 가토 측뇌실내로 투여하면 투여량에 비례하여 이뇨 및 Na과 K 배설의 증가를 초래하였으며, $250\;{\mu}g/kg$ 투여시에는 Na의 배설 분획이 5.44%까지 증가하였다. Na배설 촉진작용은 신혈류역학의 증가 보다도 훨씬 지속하여, 세뇨관에서의 Na재흡수 감소작용이 체액성 기전임을 시사하였다. TFMPP $250\;{\mu}g/kg$ icv투여시에 natriuresis와 함께 혈장내 atrial natriuretic peptide 농도가 약 6배 증가되었다. TFMPP $250\;{\mu}g/kg$을 정맥내로 투여하였을때는 뇌실내 투여시와는 상이하게 신기능에 별다른 유의한 변동을 초래하지 않았다. 이와같은 TFMPP의 diuresis 및 natriuresis는 각각 $5-HT_2$$5-HT_3$ 수용체의 선택적 antagonist인 ketanserin과 MDL 72222의 전처치에 의하여 차단되지 않았으며, methysergide에 의해서도 억제되지 않았다. 또한 $5-HT_{1A}$ antagonist로 알려진 NAN-190도 TFMPP의 작용을 차단하지 못하였으며 S(-)-propranolol도 영향을 미치지 않았다. 본 연구의 결과 중추 $5-HT_{1B}$수용체는 신장기능에 이뇨 및 Na배설 촉진적인 영향을 미치고 있고 이작용에 atrial natriuretic peptide가 관여함을 알 수 있었다.

  • PDF

동방결절 활동전압에 대한 아데노신 효과 (Effects of Adenosine on the Action Potentials of Rabbit SA Nodal Cells)

  • 김기환;호원경
    • The Korean Journal of Physiology
    • /
    • 제18권1호
    • /
    • pp.19-35
    • /
    • 1984
  • Since the first report of Drury and $Szent-Gy{\ddot{o}}rgyi$ in 1929, the inhibitory influences of adenosine on the heart have repeatedly been described by many investigators. These studies have shown that adenosine and adenine nucleotides have overall depressant effects, similar to those of acetylcholine. Heart beats become slow and weak. It is also well known that adenosine is a potent endogenous coronary vasodilator. Many investigations on the working mechanisms of adenosine have been focused mainly on the effects of the coronary blood flow. However, the cellular mechanisms underlying the inhibitory action of adenosine on sinus node are not well understood yet. Thus, this study was undertaken to examine the behavior of rabbit SA node under influence of adenosine. In these series of experiments three kinds of preparations were used: whole atrial pair, left atrial strip, and isolated SA node preparations. The electrical activity of SA node was recorded with conventional glass microelectrodes 30 to 50 $M{\Omega}$. The preparations were superfused with bicarbonate-buffered Tyrode solution of pH 7.35 and aerated with a gas mixture of $3%\;CO_2-97%\;O_2$ at $35^{\circ}C$. In whole atrial pair, adenosine suppressed sinoatrial rhythm in a dose-dependent manner. Effect of adenosine on atrial rate appeared at the concentration of $10^{-5}M$ and was enhanced in parallel with the increase in adenosine concentration. Inhibitory action of adenosine on pacemaker activity was more prominent in the preparation pretreated with norepinephrine, which can steepen the slope of pacemaker potential by increasing permeability of $Ca^{+2}$. Calcium ions in perfusate slowly produced a marked change in sinoatrial rhythm. Elevation of the calcium concentration from 0.3 to 8 mM increased the atrial rate from 132 to 174 beats/min, but over 10 mM $Ca^{+2}$ decreased. The inhibitory effect of adenosine on sinoatrial rhythm developed very rapidly. Atrial rate was recovered promptly from the adenosine-induced suppression by the addition of norepinephrine, but extra $Ca^{+2}$ was less suitable to restore the suppression of atrial rate. Adenosine suppressed also atrial contractility in the same dosage range that restricted pacemaker activity, even in the reserpinized preparation. In isolated SA node preparation, spontaneous firing rate of SA node at $35^{\circ}C$(mean{\pm}SEM, n=16) was $154{\pm}3.3\;beats/min. The parameters of action potentials were: maximum diastolic potential(MDP), $-73{\pm}1.7\;mV: overshoot(OS), $9{\pm}1.4\;mV: slope of pacemaker potential(SPP), $94{\pm}3.0\;mV/sec. Adenosine suppressed the firing rate of SA node in a dose-dependent manner. This inhibitory effect appeared at the concentration of $10^{-6}M$ and was in parallel with the increase in adenosine concentration. Changes in action potential by adenosine were dose-dependent increase of MDP and decrease of SPP until $10^{-4}M$. Above this concentration, however, the amplitude of action potential decreased markedly due to the simultaneous decrease of both MDP and OS. All these effects of adenosine were not affected by pretreatment of atropine and propranolol. Lowering extra $Ca^{2+}$ irom 2 mM to 0.3 mM resulted in a marked decrease of OS and SPP, but almost no change of MDP. However, increase of perfusate $Ca^{2+}$ from 2 mM to 6 or 8 mM produced a prominent decrease of MDP and a slight increase of OS and SPP. Dipyridamole(DPM), which is known to block the adenosine transport across the cell membrane, definately potentiated the action of adenosine. The results of this experiment suggest that adenosine suppressed pacemaker activity and atrial contractility simultaneously and directly, by decreasing $Ca^{2+}-permeability$ of nodal and atrial cell membranes.

  • PDF