• 제목/요약/키워드: proportional integral derivative

검색결과 222건 처리시간 0.02초

Enhancement of Particle Swarm Optimization by Stabilizing Particle Movement

  • Kim, Hyunseok;Chang, Seongju;Kang, Tae-Gyu
    • ETRI Journal
    • /
    • 제35권6호
    • /
    • pp.1168-1171
    • /
    • 2013
  • We propose an improvement of particle swarm optimization (PSO) based on the stabilization of particle movement (PM). PSO uses a stochastic variable to avoid an unfortunate state in which every particle quickly settles into a unanimous, unchanging direction, which leads to overshoot around the optimum position, resulting in a slow convergence. This study shows that randomly located particles may converge at a fast speed and lower overshoot by using the proportional-integral-derivative approach, which is a widely used feedback control mechanism. A benchmark consisting of representative training datasets in the domains of function approximations and pattern recognitions is used to evaluate the performance of the proposed PSO. The final outcome confirms the improved performance of the PSO through facilitating the stabilization of PM.

3자유도 로봇의 하이브리드 위치/힘 제어 (Hybrid Position/Force Control of 3 DOF Robot)

  • 양선호;박태욱;양현석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.772-776
    • /
    • 1997
  • For a robot to perfom more versatile tasks, it is invitable for the robot's end-effector to come into contact with its environment. In thos case, to achieve better performance, it is necessary to properly control the contact force between the robot and the environment. In thos work, hybrid control theory is studied and is verified through experiment using a 3 DOF robot. In the experiment, two position/force controllers are used. Fist, proportional-integral-derivative controller is used as the controller for both position and force. Second, computed-torque method is used as the position controller, and proportional-integral-derivative controller is used as the force controller. For a proper modeling used in computed-torque method, the friction torque is measured by experiment, and compensation method is studied. The hybrid control method used in this experiment effectively control the contact force between the end-effector and the environment for various types of jobs.

  • PDF

Hybrid GA-PID WAVENET 제어기를 이용한 모형 헬리콥터 시스템의 자세 제어 (Attitude Control of Helicopter Simulator System using A Hybrid GA-PID WAVENET Controller)

  • 박두환;지석준;이준탁
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권6호
    • /
    • pp.433-439
    • /
    • 2004
  • The Helicopter Simulator System is non-linear and complex. Futhermore, because of absence of its accurate mathematical model, it is difficult to control accurately its attitudes such as elevation angle and azimuth one. Therefore, we proposed a Hybrid GA-PID WAVENET(Genetic Algorithm Proportional Integral Derivative Wavelet Neural Network)control technique to control efficiently these angles. The proposed Hybrid GA-PID WAVENET is made through the following process. First, the WAVENET fundamental functions are defined. And their dilation and translation values are adjusted by GA to construct the optimal WAVENET controller. Secondly, the proportional, integral, and derivative gain coefficients of PR controller are tuned optimally. Finally, WAVENET controller which has a good transient characteristic and GA-PE controller which has a good steady state characteristic is adequately combined in hybrid type. Through the computer simulations, it is proved that the Hybrid GA-PE WAVENET control technique has a more excellent dynamic response than PID control technique and GA-PID one.

입력 차수 보상기를 이용한 비정방 선형 시스템의 출력 궤환 수동화 (Output Feedback Passivation of Non-square Linear Systems Using an Input-Dimensional Compensator)

  • 손영익
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권1호
    • /
    • pp.10-15
    • /
    • 2004
  • We present a state-space approach to make non-square linear systems strictly passive by using an input-dimensional parallel feedforward compensator. A necessary and sufficient condition for the existence of the parallel feedforward compensator is given by the static output feedback formulation, which enables to utilize linear matrix inequality. By modifying the structure of the compensator the additional technical assumption in the previous result [1] is removed. The effectiveness of the proposed method is illustrated by some numerical examples which can be stabilized by the proportional-derivative (PD) and proportional-derivative-integral (PID) control laws. The proposed control scheme can successfully replace the measurements of derivative terms in the control laws.

PID 제어를 통한 쿼드콥터 다중목적 근사최적설계 (Approximate Multi-Objective Optimization of a Quadcopter through Proportional-Integral-Derivative Control)

  • 윤재현;이종수
    • 대한기계학회논문집A
    • /
    • 제39권7호
    • /
    • pp.673-679
    • /
    • 2015
  • 본 연구는 비지배 분류 유전알고리즘(NSGA-II)을 이용하여 흐트러진 쿼드콥터의 자세를 빠르게 회복 할 수 있는 최적화된 PID(Proportional-Integral-Derivative) 이득 값을 얻고자 하였다. PID 제어에 앞서 로터가 4 개로 이루어진 쿼드콥터의 간격을 전산유체해석을 통해 정의하였으며, 정의된 쿼드콥터 모델을 통하여 PID 제어 알고리즘을 생성하였다. 반응표면 모델을 생성하기 위해 실험계획법의 하나인 D-최적계획법 이용하여 실험점을 배치 시킨 후 반응표면모델을 생성하였다. Roll 과 Altitude 의 두 값을 동시에 만족할 수 있는 PID 의 이득 값을 NSGA-II 를 통해 쿼드콥터의 최단 시간의 자세제어를 할 수 있는 최적의 이득 값을 얻을 수 있었다.

Henry gas solubility optimization for control of a nuclear reactor: A case study

  • Mousakazemi, Seyed Mohammad Hossein
    • Nuclear Engineering and Technology
    • /
    • 제54권3호
    • /
    • pp.940-947
    • /
    • 2022
  • Meta-heuristic algorithms have found their place in optimization problems. Henry gas solubility optimization (HGSO) is one of the newest population-based algorithms. This algorithm is inspired by Henry's law of physics. To evaluate the performance of a new algorithm, it must be used in various problems. On the other hand, the optimization of the proportional-integral-derivative (PID) gains for load-following of a nuclear power plant (NPP) is a good challenge to assess the performance of HGSO. Accordingly, the power control of a pressurized water reactor (PWR) is targeted, based on the point kinetics model with six groups of delayed-neutron precursors. In any optimization problem based on meta-heuristic algorithms, an efficient objective function is required. Therefore, the integral of the time-weighted square error (ITSE) performance index is utilized as the objective (cost) function of HGSO, which is constrained by a stability criterion in steady-state operations. A Lyapunov approach guarantees this stability. The results show that this method provides superior results compared to an empirically tuned PID controller with the least error. It also achieves good accuracy compared to an established GA-tuned PID controller.

Hardware-Based Implementation of a PIDR Controller for Single-Phase Power Factor Correction

  • Le, Dinh Vuong;Park, Sang-Min;Yu, In-Keun;Park, Minwon
    • 한국산업정보학회논문지
    • /
    • 제21권4호
    • /
    • pp.21-30
    • /
    • 2016
  • In a single-phase power factor correction (PFC), the standard cascaded control algorithm using a proportional-integral-derivative (PID) controller has two main drawbacks: an inability to track sinusoidal current reference and low harmonic compensation capability. These drawbacks cause poor power factor and high harmonics in grid current. To improve these drawbacks, this paper uses a proportional-integral-derivative-resonant (PIDR) controller which combines a type-III PID with proportional-resonant (PR) controllers in the PFC. Based on a small signal model of the PFC, the type-III PID controller was implemented taking into account the bandwidth and phase margin of the PFC system. To adopt the PR controllers, the spectrum of inductor current of the PFC was analyzed in frequency domain. The hybrid PIDR controller were simulated using PSCAD/EMTDC and implemented on a 3 kW PFC prototype hardware. The performance results of the hybrid PIDR controller were compared with those of an individual type-III PID controller. Both controllers were implemented successfully in the single-phase PFC. The total harmonic distortion of the proposed controller were much better than those of the individual type-III PID controller.

이동물체가 정밀 시스템에 미치는 영항분석에 관한 연구 (A Study on the Effect Analysis Influenced on the Advanced System of Moving Object)

  • 신현재;김수인;최인호;손영우;안영환;김대욱;이재수
    • 조명전기설비학회논문지
    • /
    • 제21권8호
    • /
    • pp.87-95
    • /
    • 2007
  • 본 논문에서는 영역기반의 MAD(Mean Absolute Difference) 알고리즘과 변형된 PID(Proportional Integral Derivative) 기반의 팬/틸트 제어기를 이용하여 적응적인 스테레오 물체추적을 수행함으로써 물체추적 시스템의 오류검출 및 안정도를 분석하였다. 즉 순차적인 스테레오 입력영상에 영역기반의 MAD 알고리즘과 스테레오 카메라의 기하학적 정보를 이용하여 좌, 우측 표적물체의 위치정보를 추출해 낸 다음, 이 값으로 변형된 PID 제어기에 사용하여 잡음들이 존재하는 환경에서도 스테레오 카메라의 팬/틸트를 효과적으로 제어할 수 있었다. 따라서 본 논문에서 제시된 알고리즘을 이용할 경우 3D 로봇비전과 같은 정밀시스템에서 이동하는 추적물체에 대한 적응적인 제어와 실질적인 로봇 시각 시스템의 구현 가능성을 확인하였다.

A Fuzzy Self-Tuning PID Controller with a Derivative Filter for Power Control in Induction Heating Systems

  • Chakrabarti, Arijit;Chakraborty, Avijit;Sadhu, Pradip Kumar
    • Journal of Power Electronics
    • /
    • 제17권6호
    • /
    • pp.1577-1586
    • /
    • 2017
  • The Proportional-Integral-Derivative (PID) controller is still the most widespread control strategy in the industry. PID controllers have gained popularity due to their simplicity, better control performance and excellent robustness to uncertainties. This paper presents the optimal tuning of a PID controller for domestic induction heating systems with a series resonant inverter for controlling the induction heating power. The objective is to design a stable and superior control system by tuning the PID controller with a derivative filter (PIDF) through Fuzzy logic. The paper also compares the performance of the Fuzzy PIDF controller with that of a Ziegler-Nichols PID controller and a fine-tuned PID controller with a derivative filter. The system modeling and controllers are simulated in MATLAB/SIMULINK. The results obtained show the effectiveness and superiority of the proposed Fuzzy PID controller with a derivative filter.

Implementation of Fuzzy Self-Tuning PID and Feed-Forward Design for High-Performance Motion Control System

  • Thinh, Ngo Ha Quang;Kim, Won-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제14권2호
    • /
    • pp.136-144
    • /
    • 2014
  • The existing conventional motion controller does not perform well in the presence of nonlinear properties, uncertain factors, and servo lag phenomena of industrial actuators. Hence, a feasible and effective fuzzy self-tuning proportional integral derivative (PID) and feed-forward control scheme is introduced to overcome these problems. In this design, a fuzzy tuner is used to tune the PID parameters resulting in the rejection of the disturbance, which achieves better performance. Then, both velocity and acceleration feed-forward units are added to considerably reduce the tracking error due to servo lag. To verify the capability and effectiveness of the proposed control scheme, the hardware configuration includes digital signal processing (DSP) which plays the main role, dual-port RAM (DPRAM) to guarantee rapid and reliable communication with the host, field-programmable gate array (FPGA) to handle the task of the address decoder and receive the feed-back encoder signal, and several peripheral logic circuits. The results from the experiments show that the proposed motion controller has a smooth profile, with high tracking precision and real-time performance, which are applicable in various manufacturing fields.