• 제목/요약/키워드: proportional control valve

검색결과 185건 처리시간 0.028초

유압모터 길들이기 자동시험 제어기 개발 (Development of the Auto-Aging Test Controller for a Hydraulic Motor)

  • 정규홍;신대영;서동진
    • 드라이브 ㆍ 컨트롤
    • /
    • 제12권4호
    • /
    • pp.28-34
    • /
    • 2015
  • Because heavy-duty construction vehicles such as excavators are required for good engine-room cooling capacity, a hydraulic gear motor is adopted in the cooling fan drive mechanism to actively control the output speed, instead of adopting the conventional ON/OFF type belt drive. While gear motors are normally limited to 140bars of operating pressure, those for the cooling fan are capable of operating at continuous pressures of up to 220bars. After assembly, all gear motors for high pressure must pass an aging test which is a kind of the wearing process between the gear teeth and motor housing. During the aging process with gradual pressure increments, gear sticking sometimes occurs due to abnormal wear, resulting in defects. This paper focuses on a gear-sticking free aging test controller that is designed together with the knowledge of an experienced operator and the analysis results of experimental data of the gear jamming phenomenon. From the aging experiment, it is demonstrated that the developed controller that can alter the setting pressure of the load pump is effective for stabilizing the abrupt increase in the motor input pressure, thus preventing the hydraulic motor from stopping. This is expected to be helpful for the reduction of defects and increase in productivity.

고속전자밸브를 사용한 유압시스템의 안정성 해석에 관한 연구 (A Study on Stability Analysis of Hydraulic System Using High Speed On-Off Valves)

  • 유태재
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권3호
    • /
    • pp.412-420
    • /
    • 2003
  • This study describes the merits of PWM control of hydraulic system using high speed on-off valves. Generally, Electro-hydraulic valves can be classified into two classification: valves which are controlled by analog signal and which are controlled by digital. The former includes hydraulic servo valves and proportional valves which require A/D converters as interface to digital computer and too costly and sensitive to oil contamination because of complexity in structures. The latter includes high speed on-off valves which do not require A/D converters because they are normally operated in a pulse width modulation(PWM) method, and are low in price and robust to oil contamination because of their simple structures. The objectives of this study is to analyze the limit cycle which regularly appear in the position control system using 2/2way high speed on-off valves and to give a criterion for the stability of this system. The nonlinear characteristics of PWM and cylinder friction of this system are described by harmonic linearization and the effects of parameter variations to the system stability are simulated.

Energetics of the Heart Model with the Ventricu1ar Assist Device

  • Chung, Chanil-Chung;Lee, Sang-Woo;Han, Dong-Chul;Min, Byoung-Goo
    • 대한의용생체공학회:의공학회지
    • /
    • 제17권1호
    • /
    • pp.43-48
    • /
    • 1996
  • We investigated the energistics of the physiological heart model by comparing predictive indexes of the myocardial oxygen consumption (MOC), such as tension-time index (R), tension-time or force-time inteual (FTI), rate-pressure product (RPP), pressure-work index, and systolic pressure-volume area (PVA) when using the electro-hydraulic left ventricular device (LVAD). We developed the model of LVAD incorporated the closed-loop cardiovascular system with a baroreceptor which can control heart rate and time-varying elastance of left and right ventricles. On considering the benefit of the LVAD, the effects of various operation modes, especially timing of assistance, were evaluated using this coupled computer model. Overall results of the computer simulation shows that our LVAD can unload the ischemic (less contractile) heart by decreasing the MU and increasing coronary flow. Because the pump ejection at the end diastolic phase of the natural heart may increase the afterload of the left ventricle, the control scheme of our LVAD must prohibit ejecting at this time. Since the increment of coronary flow is proportional to the peak aortic pressure after ventricle contraction, the LVAD must eject immediately following the closure of the aortic valve to increase oxygen availability.

  • PDF

실린더 출력 힘의 실험적 추정을 통한 굴삭기 궤적제어 (Trajectory Control of Excavator with Experimental Estimation of Cylinder Output Force)

  • 오경원;김동남;김남훈;홍대희;김윤기;홍석희
    • 한국정밀공학회지
    • /
    • 제28권1호
    • /
    • pp.48-55
    • /
    • 2011
  • Hydraulic excavator is one of the most widely used heavy machines in construction sites including dismantling. In the dismantling sites, the excavators equipped with crusher or breaker carry out dangerous operations, so drivers are always exposed to unexpected danger. For safety operation, remote control of the hydraulic excavator has been studied using proportional control valve, which requires an appropriate motion control of its bucket tip. In this case, kinematics and dynamics analysis have to be preceded through modeling of excavator. However, it is difficult to acquire reasonable results from the analysis due to insufficient information of physical parameters such as mass of each links and locations of mass centers, etc. This study deals with the trajectory control of bucket tip, which is based on experimental estimation of cylinder output force. The estimated forces are fed into the control of each cylinder in order to compensate gravitational and frictional effects in the cylinders. The control was applied to horizontal trajectories that are for flattening work.

유압식 굴삭기 효율 향상을 위한 HPM 시스템 개발 (Development of the HPM System to Improve Efficiency of the Hydraulic Excavator)

  • 권용철;이경섭;김성훈;구병국
    • 드라이브 ㆍ 컨트롤
    • /
    • 제16권4호
    • /
    • pp.1-8
    • /
    • 2019
  • The HPM (High-speed Power Matching) system is an electro-hydraulic control system. It directly controls the swash plate of the pump by selecting four-loop logic based on joystick signals, pump flow, and pressure signal to improve the efficiency and controllability of construction machines. In the NFC (Negative Flow Control) system, a typical pump control system using conventional open center type MCV, the loss is continuously generated by flow through the center bypass line even when the excavator is not in operation. Also, due to the slow response of the pump that indirectly controls the flow rate using the pressure regulator, peak pressure occurs at the start or stop of the operation. Conversely, the HPM system uses an MCV without center-by-pass flow path and the swash plate of a pump for the HPM is controlled by a high-speed proportional flow control valve. As a result, the HPM system minimizes energy loss in standby state of the excavator and enables peak pressure control through rapid electro-hydraulic control of a pump. In this paper, the concept of the HPM system algorithm is introduced and the hydraulic system efficiency is compared with the NFC system using the excavator SAT (System Analysis Tool).

신경회로망을 이용한 공압구동기의 위치 추종제어에 관한 연구 (A Study on Tracking Position Control of Pneumatic Actuators Using Neural Network)

  • Gi Heung Choi
    • 한국안전학회지
    • /
    • 제15권3호
    • /
    • pp.115-123
    • /
    • 2000
  • 공압구동기는 다양한 형태의 위험작업 환경하에서 사용되고 있다. 또한, 공압구동기를 적용한 공정은 일반적으로 환경친화적인 것으로 인식되고 있다. 대부분의 경우, 공압구동기는 point to point 제어에 사용된다. 그러나, 최근 공압구동기의 정밀 위치제어에 관한 많은 연구가 수행되고 있다. 본 연구에서는 비례밸브로 구성된 공압구동기의 추종위치제어에 관하여 논의한다. 제안되는 제어기는 압력제어 루프와 위치제어 루프로 구성된다. 공기의 압축성에 기인한 비선형성을 상쇄하기 위하여 되먹임선형화에 의한 PID제어기가 압력제어 루프에 사용된다. 위치제어에는 신경회로망을 사용하여 비선형성을 보상한 PID제어기가 사용된다. 실험결과에 의하면, 제안된 제어기는 공압구동기의 추종성능을 대폭 향상시킬 수 있는 것으로 나타났다.

  • PDF

승용디젤엔진의 EGR, VGT 시스템을 위한 비선형 정적 모델 기반 피드포워드 제어 알고리즘 설계 (Nonlinear Static Model-based Feedforward Control Algorithm for the EGR and VGT Systems of Passenger Car Diesel Engines)

  • 박인석;박영섭;홍승우;정재성;손정원;선우명호
    • 한국자동차공학회논문집
    • /
    • 제21권6호
    • /
    • pp.135-146
    • /
    • 2013
  • This paper presents a feedforward control algorithm for the EGR and VGT systems of passenger car diesel engines. The air-to-fuel ratio and boost pressure are selected as control indicators and the positions of EGR valve and VGT vane are used as control inputs of the EGR and VGT controller. In order to compensate the non-linearity and coupled dynamics of the EGR and VGT systems, we have proposed a non-linear model-based feedforward control algorithm which is obtained from static model inversion approach. It is observed that the average modeling errors of the feedforward algorithm is about 2% using stationary engine experiment data of 225 operating conditions. Using a feedback controller including proportional-integral, the modeling error is compensated. Furthermore, it is validated that the proposed feedforward algorithm generates physically acceptable trajectories of the actuator and successfully tracks the desired values through engine experiments.

랩온어칩 내부 미세유동제어를 위한 새로운 유동제어기법 (A New Flow Control Technique for Handling Infinitesimal Flows Inside a Lab-On-a-Chip)

  • 한수동;김국배;이상준
    • 대한기계학회논문집B
    • /
    • 제30권2호
    • /
    • pp.110-116
    • /
    • 2006
  • A syringe pump or a device using high electric voltage has been used for controlling flows inside a LOC (lab-on-a-chip). Compared to LOC, however, these microfluidic devices are large and heavy that they are burdensome for a portable ${\mu}-TAS$ (micro total analysis system). In this study, a new flow control technique employing pressure regulators and pressure chambers was developed. This technique utilizes compressed air to control the micro-scale flow inside a LOC, instead of a mechanical actuator or an electric power supply. The pressure regulator controls the output air pressure by adjusting the variable resistor attached. We checked the feasibility of this system by measuring the flow rate inside a capillary tube of $100{\mu}m$ diameter in the Re numbers ranged from 0.5 to 50. In addition, the performance of this flow control system was compared with that of a conventional syringe pump. The developed flow control system was found to show superior performance, compared with the syringe pump. It maintains automatically the: air pressure inside a pressure chamber whether the flow inside the capillary tube is on or off. Since the flow rate is nearly proportional to the resistance, we can control flow in multiple microchannels precisely. However, the syringe pump shows large variation of flow rate when the fluid flow is blocked in the microchannel.

선형화 기법을 이용한 가변추력 고체추진 기관의 압력 및 추력 제어 (Control of Pressure and Thrust for a Variable Thrust Solid Propulsion System Using Linearization)

  • 김영석;차지형;고상호;김대승
    • 한국추진공학회지
    • /
    • 제15권4호
    • /
    • pp.18-25
    • /
    • 2011
  • 고체추진기관은 구조가 비교적 간단하고 장기적 저장성이 우수한 반면에 일반적으로 추력의 조절 등에 한계성을 가지고 있다. 본 논문에서는 핀틀 밸브 등과 같은 특수한 노즐을 사용하는 가변추력 고체 추진기관의 압력 및 추력 제어 알고리즘을 제안한다. 연소기 내 압력제어를 위해 질량보존만을 고려한 추진기관의 연소기 내 압력변화 모델에 대하여 고전적인 비례-적분 제어기와 모델의 비선형성을 피드백을 통해 제거하고 이를 선형모델로 대치하는 피드백 선형화 제어기를 설계한다. 또한 과소 팽창된 1차원 노즐 모델에 대한 추력식을 유도한 후, 고전적 선형화 기법을 이용하여 비례-적분 추력제어기를 설계하고, 시뮬레이션을 통하여 성능을 시연한다.

유전 알고리즘을 이용한 유압 위치계의 PID 제어기 동조 (Tuning of PID Controller for Hydraulic Positioning System Using Genetic Algorithm)

  • 김기범;박승민;김인수
    • 한국기계가공학회지
    • /
    • 제15권3호
    • /
    • pp.93-101
    • /
    • 2016
  • This study presents a simple genetic algorithm to systematically design a PID controller for a hydraulic positioning system operated by a proportional solenoid valve. The inverse dead-zone compensator with nonlinear characteristics is used to cancel out the dead-zone phenomenon in the hydraulic system. The object function considering overshoot, settling time, and control input is adopted to search for optimal PID gains. The designed PID controller is compared with the LQG/LTR controller to check the performance of the hydraulic positioning system in the time and frequency domains. The experimental results show that the hydraulic servo system with the proposed PID controller responds effectively to the various types of reference input.