• Title/Summary/Keyword: proportional control valve

Search Result 185, Processing Time 0.03 seconds

Development of the Auto-Aging Test Controller for a Hydraulic Motor (유압모터 길들이기 자동시험 제어기 개발)

  • Jung, Gyu Hong;Shin, Dae Young;Seo, Dong Jin
    • Journal of Drive and Control
    • /
    • v.12 no.4
    • /
    • pp.28-34
    • /
    • 2015
  • Because heavy-duty construction vehicles such as excavators are required for good engine-room cooling capacity, a hydraulic gear motor is adopted in the cooling fan drive mechanism to actively control the output speed, instead of adopting the conventional ON/OFF type belt drive. While gear motors are normally limited to 140bars of operating pressure, those for the cooling fan are capable of operating at continuous pressures of up to 220bars. After assembly, all gear motors for high pressure must pass an aging test which is a kind of the wearing process between the gear teeth and motor housing. During the aging process with gradual pressure increments, gear sticking sometimes occurs due to abnormal wear, resulting in defects. This paper focuses on a gear-sticking free aging test controller that is designed together with the knowledge of an experienced operator and the analysis results of experimental data of the gear jamming phenomenon. From the aging experiment, it is demonstrated that the developed controller that can alter the setting pressure of the load pump is effective for stabilizing the abrupt increase in the motor input pressure, thus preventing the hydraulic motor from stopping. This is expected to be helpful for the reduction of defects and increase in productivity.

A Study on Stability Analysis of Hydraulic System Using High Speed On-Off Valves (고속전자밸브를 사용한 유압시스템의 안정성 해석에 관한 연구)

  • 유태재
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.412-420
    • /
    • 2003
  • This study describes the merits of PWM control of hydraulic system using high speed on-off valves. Generally, Electro-hydraulic valves can be classified into two classification: valves which are controlled by analog signal and which are controlled by digital. The former includes hydraulic servo valves and proportional valves which require A/D converters as interface to digital computer and too costly and sensitive to oil contamination because of complexity in structures. The latter includes high speed on-off valves which do not require A/D converters because they are normally operated in a pulse width modulation(PWM) method, and are low in price and robust to oil contamination because of their simple structures. The objectives of this study is to analyze the limit cycle which regularly appear in the position control system using 2/2way high speed on-off valves and to give a criterion for the stability of this system. The nonlinear characteristics of PWM and cylinder friction of this system are described by harmonic linearization and the effects of parameter variations to the system stability are simulated.

Energetics of the Heart Model with the Ventricu1ar Assist Device

  • Chung, Chanil-Chung;Lee, Sang-Woo;Han, Dong-Chul;Min, Byoung-Goo
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.1
    • /
    • pp.43-48
    • /
    • 1996
  • We investigated the energistics of the physiological heart model by comparing predictive indexes of the myocardial oxygen consumption (MOC), such as tension-time index (R), tension-time or force-time inteual (FTI), rate-pressure product (RPP), pressure-work index, and systolic pressure-volume area (PVA) when using the electro-hydraulic left ventricular device (LVAD). We developed the model of LVAD incorporated the closed-loop cardiovascular system with a baroreceptor which can control heart rate and time-varying elastance of left and right ventricles. On considering the benefit of the LVAD, the effects of various operation modes, especially timing of assistance, were evaluated using this coupled computer model. Overall results of the computer simulation shows that our LVAD can unload the ischemic (less contractile) heart by decreasing the MU and increasing coronary flow. Because the pump ejection at the end diastolic phase of the natural heart may increase the afterload of the left ventricle, the control scheme of our LVAD must prohibit ejecting at this time. Since the increment of coronary flow is proportional to the peak aortic pressure after ventricle contraction, the LVAD must eject immediately following the closure of the aortic valve to increase oxygen availability.

  • PDF

Trajectory Control of Excavator with Experimental Estimation of Cylinder Output Force (실린더 출력 힘의 실험적 추정을 통한 굴삭기 궤적제어)

  • Oh, Kyeong-Won;Kim, Dong-Nam;Kim, Nam-Hoon;Hong, Dae-Hie;Kim, Yun-Ki;Hong, Suk-Hie
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.1
    • /
    • pp.48-55
    • /
    • 2011
  • Hydraulic excavator is one of the most widely used heavy machines in construction sites including dismantling. In the dismantling sites, the excavators equipped with crusher or breaker carry out dangerous operations, so drivers are always exposed to unexpected danger. For safety operation, remote control of the hydraulic excavator has been studied using proportional control valve, which requires an appropriate motion control of its bucket tip. In this case, kinematics and dynamics analysis have to be preceded through modeling of excavator. However, it is difficult to acquire reasonable results from the analysis due to insufficient information of physical parameters such as mass of each links and locations of mass centers, etc. This study deals with the trajectory control of bucket tip, which is based on experimental estimation of cylinder output force. The estimated forces are fed into the control of each cylinder in order to compensate gravitational and frictional effects in the cylinders. The control was applied to horizontal trajectories that are for flattening work.

Development of the HPM System to Improve Efficiency of the Hydraulic Excavator (유압식 굴삭기 효율 향상을 위한 HPM 시스템 개발)

  • Kwon, Yong Cheol;Lee, Kyung Sub;Kim, Sung Hun;Koo, Byoung Kook
    • Journal of Drive and Control
    • /
    • v.16 no.4
    • /
    • pp.1-8
    • /
    • 2019
  • The HPM (High-speed Power Matching) system is an electro-hydraulic control system. It directly controls the swash plate of the pump by selecting four-loop logic based on joystick signals, pump flow, and pressure signal to improve the efficiency and controllability of construction machines. In the NFC (Negative Flow Control) system, a typical pump control system using conventional open center type MCV, the loss is continuously generated by flow through the center bypass line even when the excavator is not in operation. Also, due to the slow response of the pump that indirectly controls the flow rate using the pressure regulator, peak pressure occurs at the start or stop of the operation. Conversely, the HPM system uses an MCV without center-by-pass flow path and the swash plate of a pump for the HPM is controlled by a high-speed proportional flow control valve. As a result, the HPM system minimizes energy loss in standby state of the excavator and enables peak pressure control through rapid electro-hydraulic control of a pump. In this paper, the concept of the HPM system algorithm is introduced and the hydraulic system efficiency is compared with the NFC system using the excavator SAT (System Analysis Tool).

A Study on Tracking Position Control of Pneumatic Actuators Using Neural Network (신경회로망을 이용한 공압구동기의 위치 추종제어에 관한 연구)

  • Gi Heung Choi
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.3
    • /
    • pp.115-123
    • /
    • 2000
  • Pneumatic actuators are widely used in a variety of hazardous working environments. Any process that involves pneumatic actuation is also recognized as "eco-friendly". In most cases, applications of pneumatic actuators require only point-to-point control. In recent years, research efforts have been directed toward achieving precise position tracking control. In this study, a tracking position control method is proposed and experimentally evaluated for a linear positioning system. The positioning system is composed of a pneumatic actuator and a 3-port proportional valve. The proposed controller has an inner pressure control loop and an outer position control loop. A PID controller with feedback linearization is used in the pressure control loop to nullify the nonlinearity arising from the compressibility of the air. The position controller is also a PID controller augmented with the friction compensation by a neural network. Experimental results indicate that the proposed controller significantly improves the tracking performance.rformance.

  • PDF

Nonlinear Static Model-based Feedforward Control Algorithm for the EGR and VGT Systems of Passenger Car Diesel Engines (승용디젤엔진의 EGR, VGT 시스템을 위한 비선형 정적 모델 기반 피드포워드 제어 알고리즘 설계)

  • Park, Inseok;Park, Yeongseop;Hong, Seungwoo;Chung, Jaesung;Sohn, Jeongwon;Sunwoo, Myoungho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.135-146
    • /
    • 2013
  • This paper presents a feedforward control algorithm for the EGR and VGT systems of passenger car diesel engines. The air-to-fuel ratio and boost pressure are selected as control indicators and the positions of EGR valve and VGT vane are used as control inputs of the EGR and VGT controller. In order to compensate the non-linearity and coupled dynamics of the EGR and VGT systems, we have proposed a non-linear model-based feedforward control algorithm which is obtained from static model inversion approach. It is observed that the average modeling errors of the feedforward algorithm is about 2% using stationary engine experiment data of 225 operating conditions. Using a feedback controller including proportional-integral, the modeling error is compensated. Furthermore, it is validated that the proposed feedforward algorithm generates physically acceptable trajectories of the actuator and successfully tracks the desired values through engine experiments.

A New Flow Control Technique for Handling Infinitesimal Flows Inside a Lab-On-a-Chip (랩온어칩 내부 미세유동제어를 위한 새로운 유동제어기법)

  • Han, Su-Dong;Kim, Guk-Bae;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.110-116
    • /
    • 2006
  • A syringe pump or a device using high electric voltage has been used for controlling flows inside a LOC (lab-on-a-chip). Compared to LOC, however, these microfluidic devices are large and heavy that they are burdensome for a portable ${\mu}-TAS$ (micro total analysis system). In this study, a new flow control technique employing pressure regulators and pressure chambers was developed. This technique utilizes compressed air to control the micro-scale flow inside a LOC, instead of a mechanical actuator or an electric power supply. The pressure regulator controls the output air pressure by adjusting the variable resistor attached. We checked the feasibility of this system by measuring the flow rate inside a capillary tube of $100{\mu}m$ diameter in the Re numbers ranged from 0.5 to 50. In addition, the performance of this flow control system was compared with that of a conventional syringe pump. The developed flow control system was found to show superior performance, compared with the syringe pump. It maintains automatically the: air pressure inside a pressure chamber whether the flow inside the capillary tube is on or off. Since the flow rate is nearly proportional to the resistance, we can control flow in multiple microchannels precisely. However, the syringe pump shows large variation of flow rate when the fluid flow is blocked in the microchannel.

Control of Pressure and Thrust for a Variable Thrust Solid Propulsion System Using Linearization (선형화 기법을 이용한 가변추력 고체추진 기관의 압력 및 추력 제어)

  • Kim, Young-Seok;Cha, Ji-Hyeong;Ko, Sang-Ho;Kim, Dae-Seung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.4
    • /
    • pp.18-25
    • /
    • 2011
  • Solid propulsion systems have simple structures compared to other propulsion systems and are suitable for long-term storage. However the systems generally have limits on control of thrust levels. In this paper we suggest control algorithms for combustion chamber pressure of variable thrust solid propulsion systems using special nozzles such as pintle valve. For the pressure control within the chamber, we use a simple pressure change model by considering only mass conservation within the combustion chamber, design a classical algorithm and also a nonlinear controller using the feedback linearization technique. Also we derive the equation of the thrust for an under-expanded one-dimensional nozzle and then design a proportional-intergral controller after linearizing the thrust model for an operating point. Finally, we demonstrate the performance of the controller through a numerical simulation.

Tuning of PID Controller for Hydraulic Positioning System Using Genetic Algorithm (유전 알고리즘을 이용한 유압 위치계의 PID 제어기 동조)

  • Kim, Gi-Bum;Park, Seung-Min;Kim, In-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.3
    • /
    • pp.93-101
    • /
    • 2016
  • This study presents a simple genetic algorithm to systematically design a PID controller for a hydraulic positioning system operated by a proportional solenoid valve. The inverse dead-zone compensator with nonlinear characteristics is used to cancel out the dead-zone phenomenon in the hydraulic system. The object function considering overshoot, settling time, and control input is adopted to search for optimal PID gains. The designed PID controller is compared with the LQG/LTR controller to check the performance of the hydraulic positioning system in the time and frequency domains. The experimental results show that the hydraulic servo system with the proposed PID controller responds effectively to the various types of reference input.