• Title/Summary/Keyword: propionate

Search Result 519, Processing Time 0.026 seconds

Effects of Bedding Material Composition in Deep Litter Systems on Bedding Characteristics and Growth Performance of Limousin Calves

  • Meng, J.;Shi, F.H.;Meng, Qingxiang;Ren, L.P.;Zhou, Z.M.;Wu, H.;Zhao, L.P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.1
    • /
    • pp.143-150
    • /
    • 2015
  • The objective of this study was to evaluate the effects of different litter mixture compositions on bedding system temperature, pH and volatile fatty acid and ammonia-N ($NH_3$-N) content, and the serum physico-chemical parameters and growth indices of calves. Thirty-two Limousin calves ($280{\pm}20kg$) were randomly assigned to four groups (n = 8 for each group) according to the bedding system used: i) control with soil only (CTR); ii) mixture with 50% paddy hulls (PH), 30% saw dusts (SD), 10% peat moss (PM) and 10% corn cobs (CC) (TRT1); iii) mixture with 15% PH, 15% SD, 10% PM, 40% CC, and 20% corn stover (CS) (TRT2); iv) mixture with 30% PH, 10% PM, 40% CC, and 20% CS (TRT3). The litter material combinations of different treatments were based on the cost of bedding system materials in China. The cost of four treatments from low to high: Control$NH_3$-N level (271.83 to 894.72 mg/kg) was lowest for TRT1 (p<0.0001) and highest for TRT2 (p<0.0001). The acetate, propionate and butyrate levels were highest for the control group (p<0.0001). In all the groups, the pH value (6.90 to 9.09) increased at the beginning and later remained stable at below 9.09. The temperature of deep litter increased at the first week and reached the maximum ($42.1^{\circ}C$) on day 38. 3,5,3'-Triiodothyronine ($T_3$) levels in the TRT1 group animals (p<0.0001) were lower than those in the control and TRT2 animals. 3,5,3',5'-Tetraiodothyronine ($T_4$) in the TRT1 group (p = 0.006) was lower than that in the other treatment groups. Cortisol (COR) in the control and TRT1 group was lower (p<0.0001) than that in the TRT2 and TRT3 groups. Corticosterone (CORt) in the control group was higher (p<0.0001) than that in the treatment groups. The findings indicate that the deep litter bedding systems provided better conditions for animal health and growth performance compared with the control system. Furthermore, the litter composition of TRT1 was found to be optimal among the three treatment groups.

Effects of Replacing Lucerne (Medicago sativa L.) Hay with Fresh Citrus Pulp on Ruminal Fermentation and Ewe Performance

  • Sparkes, J.L.;Chaves, A.V.;Fung, Y.T.E.;van Ekris, I.;Bush, R.D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.2
    • /
    • pp.197-204
    • /
    • 2010
  • Two studies were conducted to determine the effects of replacing 30% (% in diet DM) of lucerne (Medicago sativa L.) hay with citrus pulp in Merino ewe diets: i) an in vitro study which measured ruminal fermentation; and ii) an in vivo study in which twelve Merino ewes pre- and post-lambing were fed experimental diets in a cross-over design over 120 days to evaluate effects on ewe performance (i.e. DM intake, average daily gain (ADG) and wool growth). In both the in vitro and in vivo studies, the control treatment consisted of lucerne (91.3% in diet DM), lupins (8.3% in diet DM) and phosphate (0.42% in diet DM), while the citrus pulp treatment consisted of lucerne (57.7% in diet DM), lupins (9.5% in diet DM), phosphate (0.48% in diet DM) and fresh citrus pulp (32.3% in diet DM). Data were analysed using the mixed model procedure of SAS. In the in vitro study, gas production, total volatile fatty acid (VFA) yield, proportion of propionic acid to total VFA and in vitro dry matter digestibility (IVDMD) were higher (p<0.02) in the citrus pulp treatment compared to the control treatment. In contrast, in vitro ammonia production, pH and the acetate to propionate ratio were lower (p<0.03) for the citrus pulp treatment compared to the control treatment. In the in vivo study, DM intake of ewes fed the citrus pulp diet was lower than their control ewe counterparts throughout both the pre- and post-lambing periods (928.9 vs. 1,115.0 g/d pre-; 1,285.0 vs. 1,620.3 g/d post-lambing, p<0.01), however ADG was similar (p = 0.12). Wool growth parameters and lamb performance did not differ (p>0.32) between treatments. In summary, the in vitro study demonstrated that the replacement of 30% of a lucerne diet with fresh citrus pulp improved total VFA yield, increased total gas production and improved IVDMD, while decreasing the production of ammonia, acetic acid and rumen pH. In addition, the in vivo study demonstrated that the replacement of 30% of a lucerne diet with fresh citrus pulp pre- and post-lambing decreased intake but did not affect ewe performance in terms of ADG and wool growth. These findings, of course, would be of significant interest to sheep producers endeavouring to control cost of feed ingredients whilst maintaining productivity.

Meta-analysis on Methane Mitigating Properties of Saponin-rich Sources in the Rumen: Influence of Addition Levels and Plant Sources

  • Jayanegara, Anuraga;Wina, Elizabeth;Takahashi, Junichi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.10
    • /
    • pp.1426-1435
    • /
    • 2014
  • Saponins have been considered as promising natural substances for mitigating methane emissions from ruminants. However, studies reported that addition of saponin-rich sources often arrived at contrasting results, i.e. either it decreased methane or it did not. The aim of the present study was to assess ruminal methane emissions through a meta-analytical approach of integrating related studies from published papers which described various levels of different saponin-rich sources being added to ruminant feed. A database was constructed from published literature reporting the addition of saponin-rich sources at various levels and then monitoring ruminal methane emissions in vitro. Accordingly, levels of saponin-rich source additions as well as different saponin sources were specified in the database. Apart from methane, other related rumen fermentation parameters were also included in the database, i.e. organic matter digestibility, gas production, pH, ammonia concentration, short-chain fatty acid profiles and protozoal count. A total of 23 studies comprised of 89 data points met the inclusion criteria. The data obtained were subsequently subjected to a statistical meta-analysis based on mixed model methodology. Accordingly, different studies were treated as random effects whereas levels of saponin-rich source additions or different saponin sources were considered as fixed effects. Model statistics used were p-value and root mean square error. Results showed that an addition of increasing levels of a saponin-rich source decreased methane emission per unit of substrate incubated as well as per unit of total gas produced (p<0.05). There was a decrease in acetate proportion (linear pattern; p<0.001) and an increase in propionate proportion (linear pattern; p<0.001) with increasing levels of saponin. Log protozoal count decreased (p<0.05) at higher saponin levels. Comparing between different saponin-rich sources, all saponin sources, i.e. quillaja, tea and yucca saponins produced less methane per unit of total gas than that of control (p<0.05). Although numerically the order of effectiveness of saponin-rich sources in mitigating methane was yucca>tea>quillaja, statistically they did not differ each other. It can be concluded that methane mitigating properties of saponins in the rumen are level- and source-dependent.

Rumen Parameters and Urea Kinetics in Goats and Sheep

  • Darlis, N. Abdullah;Halim, R.A.;Jalaludin, S.;Ho, Y.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.7
    • /
    • pp.922-928
    • /
    • 2000
  • The effects of animal species and supplements on rumen fluid characteristics, plasma urea-N (PUN) concentration, plasma urea-N pool size, urea-N degradation in the gut and urea-N net flux (urea-N synthesis rate) were studied in goats and sheep, with some minor differences detected. The animals were fed either chopped rice straw ad libitum+200 g soybean meal (SBM), or chopped rice straw ad libitum+190 g soybean meal+300 g sago meal (SBM+SM) for 14 days. The supplements were isonitrogenous (80 g crude protein/animal/d). [$^{14}C$]-urea was used as the marker for urea metabolism studies. Two animals from each species were fed either supplement in a cross-over design in two periods. The results showed that rumen pH was significantly (p<0.001) lower in animals fed SBM+SM than those fed SBM supplement. The ammonia concentrations of rumen fluid were significantly (p<0.01) higher in sheep (382.9 mg N/L) than goats (363.1 mg N/L) when fed SBM supplement but lower (282.5 mg N/L) than that of goats (311.0 mg N/L) when fed SBM+SM supplement. Total VFA concentrations were significantly (p<0.05) higher in animals fed SBM+SM supplement than those fed SBM supplement. Goats had significantly (p<0.01) higher molar proportions of acetate (79.1, 77.7%, respectively) than sheep (75.8, 74.0%, respectively) in both supplements. The molar proportion of acetate was significantly (p<0.05) higher, while that of butyrate lower in animals fed SBM supplement than those fed SBM+SM supplement. In animals fed SBM supplement, the molar proportion of propionate was significantly (p<0.01) higher in sheep (18.0%) than in goats (15.6%), but in animals fed SBM+SM, the molar proportion of butyrate was significantly (p<0.01) higher (9.6%) in sheep than in goats (7.2%). Plasma urea-N concentration, plasma urea-N pool size, urea-N degradation in the gut, urea-N net flux and the fraction of urea-C from the blood entering the rumen were not significantly different between goats and sheep fed either supplement. However, PUN concentration was significantly (p<0.05) lower in animals fed SBM+SM supplement (average of 13.8 mg N/100 ml) than in those fed SBM supplement (average of 16.5 mg N/100 ml). The urea net flux was significantly (p<0.05) higher in goats (average of 14.5 g N/d) than sheep (average of 12.9 g N/d), and animals fed SBM supplement showed higher (average of 14.9 g N/d) urea net flux than animals fed SBM+SM supplement (average of 12.9 g N/d). A significant (p<0.05) positive correlation was observed between urea-N net flux and urea-N degradation; urea-N net flux and pool size; urea-N net flux and urea excretion in the urine; and PUN and rumen ammonia in goats. While in sheep, significant (p<0.05) positive correlation was observed between urea-N net flux and urea excretion in the urine; and PUN and rumen ammonia.

Effect of Wood Vinegar on the Performance, Nutrient Digestibility and Intestinal Microflora in Weanling Pigs

  • Choi, J.Y.;Shinde, P.L.;Kwon, I.K.;Song, Y.H.;Chae, Byung-Jo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.2
    • /
    • pp.267-274
    • /
    • 2009
  • Two experiments were conducted to investigate the feeding value of wood vinegar in weanling pigs. In Experiment 1, weanling pigs (n = 224; Landrace ${\times}$Yorkshire ${\times}$Duroc, 21${\pm}$3 d-old, initial BW 6.12${\pm}$0.10 kg) were assigned to four dietary treatments. Different levels of wood vinegar were added to the diets as dietary treatments (0, 0.1, 0.2 and 0.3%). Each treatment comprised 4 replicates with 14 piglets in each. Experimental feeding was conducted for 28 d in two phases (phase I, d 0 to 14 and phase II, d 15 to 28). Feeding of wood vinegar linearly (p<0.05) improved the phase I, phase II and overall ADG and increased (linear, p<0.05) the overall and phase II ADFI. Linear improvements in the apparent fecal digestibility of dry matter (p = 0.013), gross energy (p = 0.019) and crude protein (p = 0.033) were observed as the level of wood vinegar was increased in the diet of pigs. Experiment 2 was conducted to compare dietary wood vinegar with commonly used growth promoters, organic acid (mixture of 21% phosphoric acid, 3.25% propionic acid, 2.8% formic acid, 10% calcium formate and 5% calcium propionate) and antibiotic (aparamycin). A total of 288 weanling piglets (Landrace ${\times}$Yorkshire ${\times}$Duroc, 22${\pm}$2 d-old, initial BW 6.62${\pm}$0.31 kg) were assigned to four treatments with four replicates (18 piglets/pen) for 28 days and fed in 2 phases: phase I, d 0 to 14 and phase II, d 15 to 28. The dietary treatments were control (corn-soybean meal basal diet without antibiotics) and diets containing 0.2% antibiotic, 0.2% organic acid and 0.2% wood vinegar. Pigs fed antibiotic showed higher (p<0.001) ADG and better feed efficiency followed by pigs fed wood vinegar and organic acid diets while those fed the control diet had lowest ADG and poorest feed efficiency. The overall and phase I ADFI was highest (p<0.001) in pigs fed wood vinegar and lowest in pigs fed the control diet. Apparent fecal digestibility of dry matter, gross energy and crude protein was significantly higher (p<0.05) in pigs fed the antibiotic diet when compared with pigs fed the control but comparable among pigs fed antibiotic, organic acid and wood vinegar diets. Higher populations of Lactobacillus (p = 0.004) were noted in the ileum of pigs fed the wood vinegar diet, while the population of coliforms in the ileum and cecum was higher (p<0.001) in pigs fed the control diet when compared with pigs fed antibiotic, organic acid or wood vinegar diets. These results indicated that wood vinegar could improve the performance of weanling pigs by improving the nutrient digestibility and reducing harmful intestinal coliforms; moreover performance of pigs fed wood vinegar was superior to those fed organic acid.

Effects of Plant Extracts on Microbial Population, Methane Emission and Ruminal Fermentation Characteristics in In vitro

  • Kim, E.T.;Kim, C.H.;Min, K.S.;Lee, S.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.6
    • /
    • pp.806-811
    • /
    • 2012
  • This study was conducted to evaluate effects of plant extracts on methanogenesis and rumen microbial diversity in in vitro. Plant extracts (Artemisia princeps var. Orientalis; Wormwood, Allium sativum for. Pekinense; Garlic, Allium cepa; Onion, Zingiber officinale; Ginger, Citrus unshiu; Mandarin orange, Lonicera japonica; Honeysuckle) were obtained from the Plant Extract Bank at Korea Research Institute of Bioscience and Biotechnology. The rumen fluid was collected before morning feeding from a fistulated Holstein cow fed timothy and commercial concentrate (TDN; 73.5%, crude protein; 19%, crude fat; 3%, crude fiber; 12%, crude ash; 10%, Ca; 0.8%, P; 1.2%) in the ratio of 3 to 2. The 30 ml of mixture, comprising McDougall buffer and rumen liquor in the ratio of 4 to 1, was dispensed anaerobically into serum bottles containing 0.3 g of timothy substrate and plant extracts (1% of total volume, respectively) filled with $O_2$-free $N_2$ gas and capped with a rubber stopper. The serum bottles were held in a shaking incubator at $39^{\circ}C$ for 24 h. Total gas production in all plant extracts was higher (p<0.05) than that of the control, and total gas production of ginger extract was highest (p<0.05). The methane emission was highest (p<0.05) at control, but lowest (p<0.05) at garlic extract which was reduced to about 20% of methane emission (40.2 vs 32.5 ml/g DM). Other plant extracts also resulted in a decrease in methane emissions (wormwood; 8%, onion; 16%, ginger; 16.7%, mandarin orange; 12%, honeysuckle; 12.2%). Total VFAs concentration and pH were not influenced by the addition of plant extracts. Acetate to propionate ratios from garlic and ginger extracts addition samples were lower (p<0.05, 3.36 and 3.38 vs 3.53) than that of the control. Real-time PCR indicted that the ciliate-associated methanogen population in all added plant extracts decreased more than that of the control, while the fibrolytic bacteria population increased. In particular, the F. succinogens community in added wormwood, garlic, mandarin orange and honeysuckle extracts increased more than that of the others. The addition of onion extract increased R. albus diversity, while other extracts did not influence the R. albus community. The R. flavefaciens population in added wormwood and garlic extracts decreased, while other extracts increased its abundance compared to the control. In conclusion, the results indicated that the plant extracts used in the experiment could be promising feed additives to decrease methane gas emission from ruminant animals while improving ruminal fermentation.

Effect of increased dietary crude protein levels on production performance, nitrogen utilisation, blood metabolites and ruminal fermentation of Holstein bulls

  • Xia, Chuanqi;Rahman, Muhammad Aziz Ur;Yang, He;Shao, Taoqi;Qiu, Qinghua;Su, Huawei;Cao, Binghai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.10
    • /
    • pp.1643-1653
    • /
    • 2018
  • Objective: This study investigated the effect of dietary crude protein (CP) supplementation on nutrient intake, nitrogen (N) utilisation, blood metabolites, ruminal fermentation and growth performance of young Holstein bulls. Methods: Twenty-one young bulls weighing $277{\pm}11.2kg$ were equally divided into three groups and were offered diets formulated with low CP (LCP; 10.21% CP and 4.22% rumen degradable protein [RDP]), medium CP (MCP; 12.35% CP and 5.17% RDP) and high CP (HCP; 14.24% CP and 6.03% RDP). Yellow corn silage was used as a unique forage source and was mixed with concentrate. This mixed feed was given ad libitum to the young bulls included in the study. Results: Results showed that CP intake, blood urea nitrogen, N intake, total N excretion and N balance increased linearly with an increase in dietary CP level (p<0.05). However, no significant difference was observed in nutrient digestibility among the bulls receiving the different diets. Ruminal pH (p<0.05) and ammonia nitrogen ($NH_3-N$) concentration (p<0.01) were significantly higher in the bulls receiving the MCP and HCP diets than in those receiving the LCP diet. The bulls receiving the HCP diet showed significantly higher ruminal bacterial protein level, propionate, acetate and total volatile fatty acid (TVFA) concentrations than bulls receiving the LCP diet (p<0.05). Moreover, dietary CP level exerted a significant positive effect on the final body weight, average daily gain and gain-to-feed ratio of the bulls (p<0.05). Conclusion: High dietary CP level is optimal for achieving maximum growth and high profitability without exerting a negative effect on the physiology of growing Holstein bulls.

Effects of Various Additives for Spoilage Prevention on Brewers grain and Soymilk by-product (여러 가지 첨가제가 맥주박과 베지밀박의 부패방지에 미치는 영향)

  • Lee, H.J.;Kim, H.S.;Jeon, B.S.;Kim, S.W.;Ki, K.S.;Cho, K.K.;Cho, J.S.;Lee, H.G.;Choi, Y.J.
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.3
    • /
    • pp.74-84
    • /
    • 2002
  • This experiment was carried out to evaluate supplemental effects of various preservatives to preserve the Brewers grain and Soymilk from decay and degeneration. The NaCl, organic acid(Ca-propionate), microbial fermenter(H/MF inoculant), and methionine hydroxy analogue(MHA) were used as additives in order to compare preservability of brewers grain and soymilk by-product during 20 days at July to August. Most treatments were appeared rapid decay and degeneration as soften and covered with molds on surface from the early days of experiment. However, MHA treatments showed any change until 20 days of storage. In terms of pH and $NH_3-N$ contents, only MHA treatment showed a stable and low value. The other treatments including Control showed high values as time flowed or unstable states. In conclusion, when high moisture agricultural by-product was treated by over 5% of MHA, there was no significant physicochemical changes in long term preservation over 20 days at summer season.

  • PDF

Addition Effect of Seed-associated or Free Linseed Oil on the Formation of cis-9, trans-11 Conjugated Linoleic Acid and Octadecenoic Acid by Ruminal Bacteria In Vitro

  • Wang, J.H.;Song, M.K.;Son, Y.S.;Chang, M.B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.8
    • /
    • pp.1115-1120
    • /
    • 2002
  • The effects of seed-associated or free linseed oil on fermentation characteristics and long-chain unsaturated fatty acids composition, especially the formation of conjugated linoleic acid (CLA) and octadecenoic acid (trans-11 $C_{18:1}$, $t-C_{18:1}$) by mixed ruminal bacteria were examined in vitro. Concentrate (1% of culture solution, w/v, as-fed basis) with ground linseed (0.6% of culture solution, w/v, DM basis) or linseed oil as absorbed onto ground alfalfa hay was added to 600 ml mixed solution consisting of strained rumen fluid and artificial saliva at the ratio of 1:1 in a glass culture jar. The culture jar was covered with a glass lid with stirrer, and placed into a water-bath ($39^{\circ}C$) and incubated anaerobically up to 24 h. Seed-associated or free linseed oil did not significantly affect the pH and ammonia concentration in the culture solution. Molar percent of acetate tended to increase while that of propionate decreased with the addition of free oil treatment throughout the incubation. Differences in bacterial number were relatively small, regardless of the form of supplements. Decreasing trends in the compositions of linoleic acid ($C_{18:2}$) and linolenic acid ($C_{18:3}$) but increasing trends of stearic acid ($C_{18:0}$), $t-C_{18:1}$ and CLA compositions were found from culture contents up to 12h incubation when incubated with both ground linseed and linseed oil. The compositions of $C_{18:0}$, $C_{18:2}$ and $C_{18:3}$ were greater but those of oleic acid ($C_{18:1}$), $t-C_{18:1}$ and CLA were smaller in a culture solution containing ground linseed than those containing linseed oil. The ratio of $t-C_{18:1}$ to CLA was lower in the culture solutions containing linseed oil up to 12h incubations as compared to those containing ground linseed.

Influence of Temperature and pH on Fermentation Pattern and Methane Production in the Rumen Simulating Fermenter (RUSITEC)

  • Bhatta, R.;Tajima, K.;Kurihara, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.3
    • /
    • pp.376-380
    • /
    • 2006
  • An experiment was conducted to study the effect of temperature and pH on in vitro nutrient degradability, volatile fatty acid profile and methane production. The fermenter used was the semi-continuous system, known as the rumen simulation technique (RUSITEC). Sixteen cylinders were used at one time with a volume of 800 ml, the dilution rate was set at 3.5%/hour, the infused buffer being McDougall's artificial saliva. Basal diet (9.6 g DM) used in RUSITEC consisted of (DM) 6.40 g Timothy hay, 1.86 g crushed corn and 1.34 g soybean meal. The food for the fermentation vessel was provided in nylon bags, which were gently agitated in the liquid phase. The experiment lasted for 17 d with all the samples taken during the last 5 d. Treatments were allocated at random to four vessels each and were (1) two temperature levels of $39^{\circ}C$ and $41^{\circ}C$ (2) two pH levels of 6.0 and 7.0. The total diet contained ($g\;kg^{-1}$ DM) 957 OM, 115 CP and $167MJ\;kg^{-1}$ (DM) GE. Although increase in temperature from $39^{\circ}C$ to $41^{\circ}C$ reduced degradation of major nutrients in vitro, it was non-significant. Interaction effect of temperature with pH also reflected a similar trend. However, pH showed a significant (p<0.05) negative effect on the degradability of all the nutrients in vitro. Altering the in vitro pH from 7 to 6 caused marked reduction in DMD from 60.2 to 41.8, CPD from 76.3 to 55.3 and GED from 55.3 to 35.1, respectively. Low pH (6) depressed total VFA production (61.9 vs. 34.9 mM) as well as acetate to propionate ratio in vitro (from 2.0 to 1.5) when compared to pH 7. Compared to pH 7, total gas production decreased from 1,841 ml to 1,148 ml at pH 6, $CO_2$ and $CH_4$ production also reduced from 639 to 260 ml and 138 to 45 ml, respectively. This study supported the premise that pH is one of the principal factors affecting the microbial production of volatile fatty acids and gas. Regulating the ruminal pH to increase bacterial activity may be one of the methods to optimize VFA production, reduce methane and, possibly, improve animal performance.