• 제목/요약/키워드: property prediction

검색결과 509건 처리시간 0.025초

대퇴골 전자간부 해면골의 미세구조적 특성과 생역학적 특성에 관한 연구 (A study on the micro-structural and biomechanical properties of trabecular bone in intertrochanteric region)

  • 백명현;원예연;최문권;김광균;김한성
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.923-926
    • /
    • 2005
  • To investigate the relationship between BMD, micro-structural and mechanical properties in intertrochanteric trabecular bone, the PIXI-mus2 system, micro-CT and FE model were used. The purpose of this study were (1) to apply high-resolution imaging techniques (micro-CT imaging) in combination with new computer modeling techniques (FEA) to quantify 3D microstructural and biomechanical properties of trabecular bone in the intertrochanteric region, and (2) determine if the prediction of bone elastic constant can be improved with structural index.

  • PDF

Mechanical Properties of Cement Mortar: Development of Structure-Property Relationships

  • Ghebrab, Tewodros Tekeste;Soroushian, Parviz
    • International Journal of Concrete Structures and Materials
    • /
    • 제5권1호
    • /
    • pp.3-10
    • /
    • 2011
  • Theoretical models for prediction of the mechanical properties of cement mortar are developed based on the morphology and interactions of cement hydration products, capillary pores and microcracks. The models account for intermolecular interactions involving the nano-scale calcium silicate hydrate (C-S-H) constituents of hydration products, and consider the effects of capillary pores as well as the microcracks within the hydrated cement paste and at the interfacial transition zone (ITZ). Cement mortar was modeled as a three-phase material composed of hydrated cement paste, fine aggregates and ITZ. The Hashin's bound model was used to predict the elastic modulus of mortar as a three-phase composite. Theoretical evaluation of fracture toughness indicated that the frictional pullout of fine aggregates makes major contribution to the fracture energy of cement mortar. Linear fracture mechanics principles were used to model the tensile strength of mortar. The predictions of theoretical models compared reasonably with empirical values.

비선형 대변형 유한요소법을 이용한 열가소성 고무부품의 밀봉성능 예측 (Sealing Performance Prediction of Thermoplastic Rubber Component using Non-linear Large Deformation F.E.M.)

  • 박선;이신영;강은
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.669-673
    • /
    • 2001
  • The objective of this paper is to predict and evaluate the sealing performance of the thermoplastic rubber component in the proto-design stage. The large strain and large deformation properties of rubber are modeled by strain energy function and the related material constants are calculated from the test data. The viscoelastic property of the rubber is also considered using the coefficients in a Prony series representation of a viscoelastic modulus ken the compression stress relaxation test. The results show that the current design of cap mount system has 2-different stiffness caused by the cap-mount contact and the viscoelastic property of rubber plays an important role in time dependent deformation.

  • PDF

Hybrid Linear Analysis Based on the Net Analyte Signal in Spectral Response with Orthogonal Signal Correction

  • Park, Kwang-Su;Jun, Chi-Hyuck
    • Near Infrared Analysis
    • /
    • 제1권2호
    • /
    • pp.1-8
    • /
    • 2000
  • Using the net analyte signal, hybrid linear analysis was proposed to predict chemical concentration. In this paper, we select a sample from training set and apply orthogonal signal correction to obtain an improved pseudo unit spectrum for hybrid least analysis. using the mean spectrum of a calibration training set, we first show the calibration by hybrid least analysis is effective to the prediction of not only chemical concentrations but also physical property variables. Then, a pseudo unit spectrum from a training set is also tested with and without orthogonal signal correction. We use two data sets, one including five chemical concentrations and the other including ten physical property variables, to compare the performance of partial least squares and modified hybrid least analysis calibration methods. The results show that the hybrid least analysis with a selected training spectrum instead of well-measured pure spectrum still gives good performances, which is a little better than partial least squares.

Biomorphic C/SiC 복합재료의 기계적 물성 연구 (Prediction of Mechanical Property of Biomorphic Composites)

  • 정재연;우경식;이동주;홍순형;김연철
    • 한국항공우주학회지
    • /
    • 제40권8호
    • /
    • pp.670-677
    • /
    • 2012
  • 본 논문에서는 Biomorphic C/SiC 복합재료에 대하여 단위구조해석을 수행하였다. 소나무와 뉴송을 탄화하고 실리콘을 함침해 제조한 복합재료의 미세조직을 사각배열과 육각배열로 가정해 단위구조를 정의하고 등가물성치를 계산하였다. 단위구조의 크기가 동일하지 않은 경우도 고려하였고, 또한 공극의 배열에 따른 물성치의 변화를 몬테카를로 시뮬레이션을 통해 조사하였다.

흡음재 내부의 음향전파가 고려된 2차원 흡음형 소음기의 음향성능 예측 (Prediction of the acoustic performance of the two-dimensional dissipative silencer with the propagation of sound in the absorbent)

  • 김회전;이정권
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.870-873
    • /
    • 2003
  • This research is about the sound attenuation in the duct with lining sound absorbing material in it. Many previous researches assumed the property of lining material as locally-reacting. As the thickness of lining material thickens or the upper limit of the interested frequency range goes higher, there is a growing tendency for the experiment results to deviate from the theoretical results based on the locally reacting assumption. In this paper, the acoustic performance of the two-dimensional dissipative silencer with the propagation of sound in the absorbent was derived theoretically and calculated. The effect of increase of sound absorbing material is also considered. These results are compared from the previous results with using the locally-reacting property of sound absorbing material.

  • PDF

전산해석을 통한 고무전단강성 예측 (Rubber Shear Modulus Prediction of Finite Element Method)

  • 권태훈;김병훈;노태호;이원복;조인현
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제28회 춘계학술대회논문집
    • /
    • pp.189-192
    • /
    • 2007
  • 고무제품의 경우 구조성능평가를 위해 단축인장, 순수전단, 이축인장 및 압축시험을 수행한다. 일반적으로 단축인장시험값을 기초물성으로 사용하며 용도에 따라 다른 시험을 수행한다. 검증을 위해 단축인장시험/해석 결과를 비교하여 타당성을 확인했다. 본 연구에서는 전단강성이 주요인자인 제품의 성능평가를 위해 단축인장시험에서 획득한 물성을 적용한 QLS 해석모델의 결과를 비교, 검증하였다.

  • PDF

Study on the Evaluation of Stability of Gel Structured Cosmetics

  • Park, Chan-Ik;Kim, Ki-Sun;Lee, Sung-Jun;Yoon, Myeong-Suk;Kang, Seh-Hoon
    • 대한화장품학회지
    • /
    • 제22권2호
    • /
    • pp.167-173
    • /
    • 1996
  • The stability of gel structured emulsion and the effect of polyols on it have been studied by rheological property and interfacial tension. In this paper, three types of gel structured emulsions were prepared by using three polyols respectively(glycerine for sample 1, 1.3 BG for sample 2, PG for sample 3). And both complex modulus($G^*$) and loss angle[$\delta$ = tan-1(G"/G')] of samples were investigated against oscillating shear stress and frequency($\omega$). The results show sample 1 is most highly consistent with oscillating shear stress. And the results were compared with those of accelerated tests concerning storage stability of gel structured emulsion. To correlate consistency of rheological property with storage stability, interfacial tension from which adsorption efficiency of surfactant(Octyldodecyl Ether) could be known was measured. Sample 1 showed the largest value of [$d{\gamma}/dIn_{Cconc. of surfactant}$] in Gibbs equation. In summary, the prediction of stability could be correctly made by the consistency of rheological property(G*,$\gamma$) of gel structured emulsion against oscillating shear stress and it could be supported by measuring interfacial tension. And polyol affected the value of [$d{\gamma}/dIn_{Cconc. of surfactant}$], consequently affected the stability.lity.

  • PDF

Integration of Geophysical Properties and Geospatial Information for Telecommunication Modeling

  • Kim, Jeong-Woo;Lee, Dong-Cheon;Pack, Jeong-Ki;Yom, Jae-Hong;Kwon, Jay-Hyon;Jeong, Nam-Ho
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.745-745
    • /
    • 2002
  • Both geophysical and geospatial data provide important information in the establishment of the optimal telecommunication systems especially in the mobile telecommunication environment. The objective of this study is to utilize geophysical properties and geospatial information in the analysis of the telecommunication environment through point-to-point wave property modeling. Geophysical properties associated with wave propagation parameters of the earth surface were analyzed based on hierarchical land classification using Landsat ETM+ and IKONOS images. Three-dimensional geospatial information was obtained by processing stereo aerial images. The results show that the accurate geospatial information and reliable geosphysical property of the surface improve the prediction of receiving power of the receivers located near corners of the buildings where diffractions occur. The wave property model developed from accurate telecommunication environment could be applied to optimal cell planning and delay time analysis.

  • PDF

CAE를 이용한 자동차용 휠(wheel)의 피로수명 예측기법 연구 (The Study on the Fatigue Life Prediction on Wheels through CAE)

  • 김만섭;고길주;김정헌;양창근;김관묵
    • 한국자동차공학회논문집
    • /
    • 제12권2호
    • /
    • pp.117-122
    • /
    • 2004
  • The fatigue life in wheels was predicted by simulating the experimental method using Finite-Element analysis. Based on a high frequency fatigue property, calculations of the stresses in wheels were performed by simulating the rotating bending fatigue test. Wheels made of an aluminum alloy(A356.2) were tested using a bending fatigue tester. Results from bending fatigue test showed a linear correlation between bending moment and stress amplitude. Consequently, Finite-Element calculations were performed by a linear analysis. In order to find stress-cycles curves, spoke parts of wheel were tested using a rotary bending fatigue tester. Also, highly accurate Finite-Element analysis requires regression lines and confidence intervals from these results. In conclusion, if the fatigue data related to the material and manufacturing procedure are reliable, the prediction on fatigue lift in wheels can be carried out with high accuracy.