• Title/Summary/Keyword: properties of zero

Search Result 801, Processing Time 0.025 seconds

A Study on the Ceria Stabilized Tetragonal Zirconia Polycrystals(Ce-TZP)(II) : Mechanical Properties of Ce-TZP and its Fracture Behavior at Elevated Temperature (CeO2 안정화 정방정 Zirconia 다결정체(Ce-TZP)에 관한 연구(II) : Ce-TZP의 고온 기계적 성질과 파괴거동의 변화)

  • 강대석;김문일;박정현;문성환;백승수
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.6
    • /
    • pp.789-794
    • /
    • 1989
  • The high-temperature strength of Ce-TZP was measured at 200, 650 and 100$0^{\circ}C$ by 4-point bending test. And its fracture behavior was observed by SEM. Below $650^{\circ}C$ of the temperature, where monoclinic fraction was almost zero, the decreasing rate of bending strength was relatively slow, but above this temperature, high temperature strength was largely decreased as a result of the decrease of stress-induced transformation of zirconia. The observation of fracture surface bended at 100$0^{\circ}C$ indicated that the fracture mode changed from intergranular-into transgranular-form with regardless of ceria contents.

  • PDF

Dependence of ambient gas of oxide films fabricated by laser ablation method (레이저 어브레이션법에 의해 제조된 산화물 박막의 분위기가스 의존성)

  • 최충석;이덕출
    • Electrical & Electronic Materials
    • /
    • v.9 no.4
    • /
    • pp.357-363
    • /
    • 1996
  • The superconducting properties of YBa$_{2}$Cu$_{3}$$O_{7-x}$(YBaCuO) thin films prepared by laser ablation have been investigated. The x-ray diffraction patterns of the films were substantially different from one another. The Y and Ba oxides are formed by the collisions with oxygen molecules. On the other hand, the Cu oxide is mainly formed at initial stage of the laser irradiation. The YBaCuO films manufactured on MgO(100) substrate were indicated T$_{c}$(zero)=90 K, T$_{c}$(onset)=92 K, and J$_{c}$=3.5*10$^{5}$ A/cm$^{2}$(at 77.3K). The optimum conditions were found to be a substrate temperature of 710.deg. C, an energy density of 2 J/cm$^{2}$, and a target-substrate distance of 60mm in an oxygen partial pressure of 200 mTorr.0 mTorr.

  • PDF

Static bending and free vibration of FGM beam using an exponential shear deformation theory

  • Hadji, L.;Khelifa, Z.;Daouadji, T.H.;Bedia, E.A.
    • Coupled systems mechanics
    • /
    • v.4 no.1
    • /
    • pp.99-114
    • /
    • 2015
  • In this paper, a refined exponential shear deformation beam theory is developed for bending analysis of functionally graded beams. The theory account for parabolic variation of transverse shear strain through the depth of the beam and satisfies the zero traction boundary conditions on the surfaces of the beam without using shear correction factors. Contrary to the others refined theories elaborated, where the stretching effect is neglected, in the current investigation this so-called "stretching effect" is taken into consideration. The material properties of the functionally graded beam are assumed to vary according to power law distribution of the volume fraction of the constituents. Based on the present shear deformation beam theory, the equations of motion are derived from Hamilton's principle. Analytical solutions for static are obtained. Numerical examples are presented to verify the accuracy of the present theory.

Magnetic Sensor by Using Magnetic Effect in YBaCuO Superconductor

  • 이상헌;김찬중
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.69-71
    • /
    • 2003
  • The magnetic field sensor was fabricated with superconducting ceramics of YBaCuO system. The sensor at liquid nitrogen temperature showed the increase of electrical resistance by applying magnetic field. Actually the voltage drop across the sensor was changed from zero to a value more than 100 $mutextrm{V}$ by the applied magnetic field. The change in electrical resistance depended on magnetic field. The sensitivity of this sensor was 2.9 $\Omega$/T. The sensing limit was about $1.5\times$10$^{-5}$. The increase of electrical resistance by the magnetic field was ascribed to a modification of the Josephson junctions due to the penetrating magnetic flux into the superconducting material. Considering the observed properties of the superconductor with trapped magnetic flux, a magnetic sensor was fabricated to detect simultaneously both the intensity and the direction of the magnetic field.

  • PDF

A refined exponential shear deformation theory for free vibration of FGM beam with porosities

  • Hadji, Lazreg;Daouadji, T. Hassaine;Bedia, E. Adda
    • Geomechanics and Engineering
    • /
    • v.9 no.3
    • /
    • pp.361-372
    • /
    • 2015
  • In this paper, a refined exponential shear deformation theory for free vibration analysis of functionally graded beam with considering porosities that may possibly occur inside the functionally graded materials (FGMs) during their fabrication. For this purpose, a new displacement field based on refined shear deformation theory is implemented. The theory accounts for parabolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the beam without using shear correction factors. Based on the present refined shear deformation beam theory, the equations of motion are derived from Hamilton's principle. The rule of mixture is modified to describe and approximate material properties of the FG beams with porosity phases. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions. Illustrative examples are given also to show the effects of varying gradients, porosity volume fraction, aspect ratios, and thickness to length ratios on the free vibration of the FG beams.

A Study on the Equi-biaxial Tension Test of Rubber Material (고무재료의 등 이축 인장시험에 관한 연구)

  • 김완두;김동진;김완수;이영신
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.95-104
    • /
    • 2003
  • The material properties of rubber was determined by the experiments of uniaxial tension, uniaxial compression, planer tension, equi-biaxial tension and volumetric compression. In compression test, it is difficult to obtain the pure state of compression stress and strain due to friction force between the specimen and compression platen. In this study, the stress and strain data from the equi-biaxial tension test were converted to compression stress and strain and compared to a pure state of simple compression data when friction was zero. The compression test device with the tapered platen was proposed to overcome the effect of friction. It was fumed out that the relationship of the stress and strain using the tapered platen was in close agreement with the pure compressive state.

Vibration analysis of inhomogeneous nonlocal beams via a modified couple stress theory incorporating surface effects

  • Ebrahimi, Farzad;Safarpour, Hamed
    • Wind and Structures
    • /
    • v.27 no.6
    • /
    • pp.431-438
    • /
    • 2018
  • This paper presents a free vibration analysis of size-dependent functionally graded (FG) nanobeams with all surface effects considerations on the basis of modified couple stress theory. The material properties of FG nanobeam are assumed to vary according to power law distribution. Based on the Euler-Bernoulli beam theory, the modeled nanobeam and its equations of motion are derived using Hamilton's principle. An analytical method is used to discretize the model and the equation of motion. The model is validated by comparing the benchmark results with the obtained results. Results show that the vibration behavior of a nanobeam is significantly influenced by surface density, surface tension and surface elasticity. Also, it is shown that by increasing the beam size, influence of surface effect reduces to zero, and the natural frequency tends to its classical value.

ON STRONGLY RIGHT 𝜋-DUO RINGS

  • Cheon, Jeoung Soo;Nam, Sang Bok;Yun, Sang Jo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.327-337
    • /
    • 2020
  • This article continues the study of right 𝜋-duo rings, concentrating on the situation of nonzero powers. For this purpose we introduce the concept of strongly right 𝜋-duo and examine the structure of strongly right 𝜋-duo in relation to various ring properties that play important roles in ring theory. It is proved for a strongly right 𝜋-duo ring R that if the upper (lower) nilradical of R is zero then R is reduced. Various kinds of examples are examined in relation to the questions raised in the procedure.

Microstructure and Thermal Insulation Properties of Ultra-Thin Thermal Insulating Substrate Containing 2-D Porous Layer (2차원 기공층을 포함하는 초박형 단열기판의 미세구조 및 단열 특성)

  • Yoo, Chang Min;Lee, Chang Hyun;Shin, Hyo Soon;Yeo, Dong Hun;Kim, Sung Hoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.11
    • /
    • pp.683-687
    • /
    • 2017
  • We investigated the structure of an ultra-thin insulating board with low thermal conductivity along z-axis, which was based on the idea of void layers created during the glass infiltration process for the zero-shrinkage low-temperature co-fired ceramic (LTCC) technology. An alumina and four glass powders were chosen and prepared as green sheets by the tape casting method. After comparison of the four glass powders, bismuth glass was selected for the experiment. Since there is no notable reactivity between alumina and bismuth glass, alumina was selected as the supporting additive in glass layers. With 2.5 vol% of alumina powder, glass green sheets were prepared and stacked alternately with alumina green sheet to form the 'alumina/glass (including alumina additive)/alumina' structure. The stacked green sheets were sintered into an insulating substrate. Scanning electron microscopy revealed that the additive alumina formed supporting bridges in void layers. The depth and number of the stacking layers were varied to examine the insulating property. The lowest thermal conductivity obtained was 0.23 W/mK with a $500-{\mu}m-thick$ substrate.

A New k-$\varepsilon$ Model for Prediction of Transitional Boundary-Layer Under Zero-Pressure Gradient (압력 구배가 없는 평판 천이 경계층 유동을 예측하기 위한 k-$\varepsilon$모형의 개발)

  • Baek, Seong-Gu;Im, Hyo-Jae;Jeong, Myeong-Gyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.305-314
    • /
    • 2001
  • A modified model is proposed for calculation of transitional boundary layer flows. In order to develop the eddy viscosity model for the problem, the flow is divided into three regions; namely, pre-transition region, transition region and fully turbulent region. The pre-transition eddy-viscosity is formulated by extending the mixing length concept. In the transition region, the eddy-viscosity model employs two length scales, i.e., pre-transition length scale and turbulent length scale pertaining to the regions upstream and the downstream, respectively, and a universal model of stream-wise intermittency variation is used as a function bridging the pre-transition region and the fully turbulent region. The proposed model is applied to calculate three benchmark cases of the transitional boundary layer flows with different free-stream turbulent intensity (1%∼6%) under zero-pressure gradient. It was found that the profiles of mean velocity and turbulent intensity, local maximum of velocity fluctuations, their locations as well as the stream-wise variation of integral properties such as skin friction, shape factor and maximum velocity fluctuations are very satisfactorily predicted throughout the flow regions.