• Title/Summary/Keyword: properties of concrete

Search Result 5,730, Processing Time 0.033 seconds

The Properties of Lightweight Concrete Using the Expanded Clay (경량골재 콘크리트의 역학적 특성)

  • 김태형;하상진;최영화;김동인
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.249-252
    • /
    • 1999
  • Recently, the use of lightweight concrete in architectural structures are increasing. It is considered important to control the quality of lightweight concrete. The purpose of this study is to find mechanical properties of lightweight concrete using the expanded clay. Thus, slump, air content, compressive strength, splitting tensile strength, length change ratio, unitweight change ratio and absorption of lightweight concrete have been investigated. As a result, it was shown that proper expanded clay replaced by coarse aggregate in concrete was considered as a good replacement of lightweight concrete.

  • PDF

Fresh and hardened properties of concrete containing cold bonded aggregates

  • Thomas, Job;B., Harilal
    • Advances in concrete construction
    • /
    • v.2 no.2
    • /
    • pp.77-89
    • /
    • 2014
  • The properties of fresh and hardened concrete made using three types of artificial cold bonded aggregates are determined. The properties, namely, slump, water absorption, compressive strength and splitting tensile strength of concrete containing artificial aggregate are reported. The variables considered are aggregate type and water-to-cement ratio. Three types of cold bonded aggregates are prepared using fly ash and quarry dust. The water-to-cement ratio of 0.35, 0.45, 0.55 and 0.65 is used. The test result indicates that artificial aggregates can be recommended for making the concrete up to a strength grade of 38 MPa. The use of quarry dust in the production of artificial aggregate mitigates environmental concerns on disposal problems of the dust. Hence, the alternate material proposed in this study is a green technology in concrete production.

An Experimental Study on the Fire Resistance Properties of High Strength Concrete using Fiber for Field Application (현장 적용을 위한 섬유혼입 고강도콘크리트의 내화특성에 관한 실험적 연구)

  • Kim, Yong-Ro;Song, Young-Chan;Jungi, Yang-Hee;Kim, Ook-Jong;Lee, Do-Bum
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.187-191
    • /
    • 2008
  • It is necessary to develop a technology for effectively controling explosive spalling of high strength concrete caused increasing construction of high rise building and putting up the fireproof standard of high strength concrete by MLTM (Ministry of Land, Transport and Maritime Affairs). Accordingly, it was investigated basic properties such as slump, air content and compressive strength, and fire resistance properties of high strength concrete using polypropylene fiber for field application as a countermeasure for explosive spalling of concrete on fire in this study, As a test result, it was confirmed that PP fiber is available as fire resistance method of high strength concrete.

  • PDF

An Experimental Study on the Production and Mechanical Properties of Super-Workable Concrete (초유동 콘크리트의 제조 및 역학적 특성에 관한 실험적 연구)

  • Bae, Su-Ho;Youn, Sang-Dai;Lee, Dae-Hyoung
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.6
    • /
    • pp.104-113
    • /
    • 1998
  • The purpose of this experimental research is to produce the super-workable concrete using ordinary portland cement, blast-furnace slag lowder, and fly ash respectively, and investigate mechanical properties of super-workable concrete. For this purpose, after production of super-workable concrete for different unit weights of binder and percentages of fine aggregate, optimum mixing proportion of them was determined, and then mechanical properties of super-workable concrete such as static modulud of elasticity as well as compressive, tensile and flexural strength were tested and analyzed. Also, the mechanical performances of super-workable concrete were compared with those of high-strength concrete has an excellent mobility, compactability and segregation-resistance, but the strength of super-workable concrete is somewhat lower than that of high-strength concrete with equal mixing proportions of concrete.

  • PDF

A Fundamental Study on the Workability Improvement and Strength Properties of Superplasticized Concrete(II) (Part 2, In the Case of Strength Properties of Hardened Concrete) (유동화 콘크리트의 시공성 향상 및 강도특성에 관한 기초적 연구(II) (제2보, 경화콘크리트의 강도 특성을 중심으로))

  • 김무한;권영진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1989.10a
    • /
    • pp.21-24
    • /
    • 1989
  • The effect of superplasticizing agents on the mechanical properties in hardened concrete have been analyzed and investigated under various mix proportions of water cement ratio of 0.40, 0.50, 0.60 and 0.70, Superplasticizing agents of NL-4000, and Rheobuild-716, and addition rate of sp. agents of 0.0, 0.5, 1.0, 1.5 and 2.0 in the practical range. It is the aim of this study to provide the fundamental data on the compressive strength, dynamic and static modulus of elasticity, stress and strain curve of hardened concrete comparing with base concrete and conventional concrete for the practical use and research data accumulation of superplasticized concrete in the side of development of concrete construction technology and management.

  • PDF

Fiber reinforced concrete properties - a multiscale approach

  • Gal, Erez;Kryvoruk, Roman
    • Computers and Concrete
    • /
    • v.8 no.5
    • /
    • pp.525-539
    • /
    • 2011
  • This paper describes the development of a fiber reinforced concrete (FRC) unit cell for analyzing concrete structures by executing a multiscale analysis procedure using the theory of homogenization. This was achieved through solving a periodic unit cell problem of the material in order to evaluate its macroscopic properties. Our research describes the creation of an FRC unit cell through the use of concrete paste generic information e.g. the percentage of aggregates, their distribution, and the percentage of fibers in the concrete. The algorithm presented manipulates the percentage and distribution of these aggregates along with fiber weight to create a finite element unit cell model of the FRC which can be used in a multiscale analysis of concrete structures.

Properties of Fresh Concrete with Recycled fine Aggregates (순환잔골재를 사용한 굳지 않은 콘크리트의 특성)

  • Choi, Ki-Sun;You, Young-Chan;Yun, Hyun-Do;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.373-376
    • /
    • 2008
  • The objective of this study is to investigate the properties of fresh concrete with recycled fine aggregates. Three different kinds of fine aggregate with natural, high and low quality recycled aggregates were prepared. The concrete mixtures were produced with test parameters of replacement ratio of recycled fine aggregate. The properties of the fresh concrete were measured by means of slump and air content according to elapsed time. Quality control method to maintain the constant total mixing water for recycled aggregate concrete was suggested. The all concrete mixtures were produced with approximately the same slump on the job site after an hour. Test results indicated that compressive strength of the concrete mixtures with constant slump is not affected by the replacement ratio of recycled fine aggregate. Therefore, the practical way for the quality control of recycled aggregate concrete is to maintain the constant total mixing water.

  • PDF

Experimental Study on the Elastic Properties and Acid Resistance of Pine Needle Ash Concrete (솔잎재 콘크리트의 탄성특성 및 내산성에 관한 실험적 연구)

  • 남기성;민정기;김영익;서대석;이전성;성찬용
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.271-276
    • /
    • 1999
  • This study is performed to evaluate an elastic properties and acid-resistance of concrete using pine needle ash(PNA). Materials used for this experiment are PNA , normal portland cement, natural fine and coarse aggregate. Test results show that the highest ultrasonic pulse velocity , dynamic and static modulus of elasticity is achieved by 5% PNA filled PNA concrete, which has showed similar with those of thei normal cement concrete. Acid-resistance of PNA concrete is increased with increase of the contnet of PNA , it is 1.29 times of the normal cement concrete by 5% PNA fille PNA concrete an d2.57 times by 15% PNA filled PNA concrete . Accordingly , PNA concrete wil greatly improve the properties of concrete.

  • PDF

Experimental study on the Physical and Mechanical Properties and Acid-Resistance of Concrete with Oyster Shell (패분을 혼입한 콘크리트의 물리.역학적 특성 및 내산성에 관한 실험적 연구)

  • 서대석;민정기;정현정;남기성;성찬용
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.319-323
    • /
    • 1999
  • This study is performed to evaluate the physical and mechanical properties and acid-resistance of oyster shell concrete. The result shows that the unit weights of concrete with oyster shell are decreased by 1∼2% than that of the normla cement concrete. The highest strength is achieved by 2.5% oyster shell filled oyster shell concrete, it is increased compressive strength by 4% , tensile strength by 6% and bending strength by7% than that of the normal cement concrete, respectively . The acid-resistanceis increased with increase of the content of oyster shell. It is 1.6 times of the normal cement concrete by 15% oyster shell filled oyster shell concrete. Accordingly, oyster shell concrete will improve the properties of concrete.

  • PDF

A Study on the Properties of High Performance Concrete Using Low Heat Portland(Type IV) Cement (저열 포틀랜드(4종)시멘트를 사용한 고유동, 고강도콘크리트에 관한 연구)

  • 최광일;김기수;하재담;김동석;이순기;이동윤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.422-429
    • /
    • 1997
  • In recent years, concrete construction have become larger and higher and are demanding high performance concrete with lower heat to prevent thermal cracking, far greater workability, high strength and durability. Application of low heat portland(Type IV) cement for the high performance concrete is the best solution to satisfied those requirements. Here are explained the basic properties of fresh concrete as well as hardened concrete of high performance concrete using low that portland cement.

  • PDF