• Title/Summary/Keyword: proper motions

Search Result 100, Processing Time 0.023 seconds

The Effect of Experiential Marketing on the Brand Equity of Low-Priced Cosmetics Brands (저가 화장품 브랜드 체험 제공수단과 체험마케팅 유형이 브랜드자산에 미치는 영향)

  • Lee, Jeoung-Min;Hwang, Jin-Sook
    • Journal of the Korean Society of Costume
    • /
    • v.60 no.8
    • /
    • pp.100-117
    • /
    • 2010
  • The cosmetics industry is executing the experiential marketing strategy, which focuses the brand experiential experience for the connection with consumers and differentiated strategy for the company's brand image, according to the expansion of quality service, which increasingly consume a diverse experience. Among these, the low-priced cosmetics market is trying a variety of experiential marketing to provide positive experience of their product and their brand through a unique service or event to stimulate the motions of young woman, who are changing rapidly, and is actively utilizing the means of marketing to form brand equity for these experiential marketing. Therefore, this study is to find out the effect of customer experiential on the brand equity through a variety of experiential marketing of low-priced cosmetics brand and based on the result, we were able to find out that the experiential marketing is also used as important means of marketing for low-priced cosmetics market to secure the brand equity and to maintain long-term relationship with the customer. This is expected to provide strategic and practical implications to the cosmetic marketing managers for customer management and this will recognize the importance of customer experiential in cosmetic marketing and suggest proper marketing strategy plan. In this study, the multiple regression analysis was mainly uses to find out the influence between the variables for low-cost cosmetic brand but we're hoping to execute a study, which directly and indirectly covers the complete path by using the various parameters, which can be effected on the brand equity.

Kinematic Comparative Analysis of Long Turns between Experienced and Inexperienced Ski Instructors

  • Jo, Hyun Dai
    • Korean Journal of Applied Biomechanics
    • /
    • v.30 no.1
    • /
    • pp.17-25
    • /
    • 2020
  • Objective: The purpose of this study is to provide a better understanding of long turn mechanism by describing long turns after kinematic analysis and provide skiers and winter sports instructors with data through which they are able to analyze right postures for turns in skiing in a systematic, rational and scientific manner. Method: For this, a mean difference of kinematic variables (the center of gravity (CG) displacement of distance, trajectory, velocity, angle) was verified against a total of 12 skiers (skilled and unskilled, 6 persons each), regarding motions from the up-start to down-end points for long turns. Results: First, concerning the horizontal displacement of CG during a turn in skiing, skilled skiers were positioned on the right side at the upstart and edge-change points at a long turn. There was no difference in anteroposterior and vertical displacements. Second, in terms of CG-trajectory differences, skilled skiers revealed a significant difference during a long turn. Third, regarding skiing velocity, skilled skiers were fast at the edge-change and maximum inclination points in long turns. Fourth, there was no difference in a hip joint in terms of a lower limb joint angle. In a knee joint, a large angle was found at the up-start point among skilled skiers when they made a long turn. Conclusion: In overall, when skilled and unskilled skiers were compared, to make a good turn, it is required to turn according to the radius of turn by reducing weight, concerning the CG displacement. Regarding the CG-trajectory differences, the edge angle should be adjusted via proper inclination angulation. In addition, a skier should be more leaned toward the inside of a turn when they make a long turn. In terms of skiing velocity, it is needed to reduce friction on snow through the edging and pivoting of the radius or turn according to curvature and controlling ski pressure. Regarding a lower limb joint angle, it is important to make an up move by increasing ankle and knee angles instead of keeping the upper body straight during an up motion.

Chemical Differentiation of $C^{34}S$ and $N_2H^+$ in Dense Starless Cores

  • Kim, Shinyoung;Lee, Chang Won;Sohn, Jungjoo;Kim, Gwanjeong;Kim, Mi-Ryang
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.75.2-75.2
    • /
    • 2014
  • CS molecule as an important tracer for studying inward motions in dense cores is known to be adsorbed onto dusts in cold (T~10K) dense cores, resulting in its significant depletion in the central region of the cores which may hamper a proper study of kinematics stage of star formation. In this study we choose five 'evolved' dense starless cores, L1544, L1552, L1689B, L694-2 and L1197, to investigate how depletion of CS molecule is significant and how the molecule differentiates depending on the evolutional status of the dense cores, by using a rare isotopomer C34S. We performed mapping observations in C34S (J=2-1) and N2H+ (J=1-0) with Nobeyama 45 m telescope, and compared $850{\mu}m$ continuum data as a reference of the density distribution of the dense cores. Our data confirm the claim that CS molecule generally depletes out in the central region in dense starless cores, while N2H+ keeps abundant as they get evolved. All of integrated intensity maps show 'semi-ring-like' depletion holes in CS, and all of abundance radial profiles show decrease toward center. The CS depletion and molecular chemical differentiation seems to depend on the evolutional status in dense cores. The evolved cores shows low abundance at both central and outer regions, implying that in the case of highly evolved cores CS freeze-out occurs over the most area of the cores.

  • PDF

PAGAN II: THE EVOLUTION OF AGN JETS ON SUB-PARSEC SCALES

  • OH, JUNGHWAN;TRIPPE, SASCHA;KANG, SINCHEOL;KIM, JAE-YOUNG;PARK, JONG-HO;LEE, TAESEOK;KIM, DAEWON;KINO, MOTOKI;LEE, SANG-SUNG;SOHN, BONG WON
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.5
    • /
    • pp.299-311
    • /
    • 2015
  • We report first results from KVN and VERA Array (KaVA) VLBI observations obtained in the frame of our Plasma-physics of Active Galactic Nuclei (PAGaN) project. We observed eight selected AGN at 22 and 43 GHz in single polarization (LCP) between March 2014 and April 2015. Each source was observed for 6 to 8 hours per observing run to maximize the uv coverage. We obtained a total of 15 deep high-resolution images permitting the identification of individual circular Gaussian jet components and three spectral index maps of BL Lac, 3C 111 and 3C 345 from simultaneous dual-frequency observations. The spectral index maps show trends in agreement with general expectations – flat core and steep jets – while the actual value of the spectral index for jets shows indications for a dependence on AGN type. We analyzed the kinematics of jet components of BL Lac and 3C 111, detecting superluminal proper motions with maximum apparent speeds of about 5c. This constrains the lower limits of the intrinsic component velocities to ~ 0.98c and the upper limits of the angle between jet and line of sight to ~20°. In agreement with global jet expansion, jet components show systematically larger diameters d at larger core distances r, following the global relation d ≈ 0.2r, albeit within substantial scatter.

Virtual Prototyping of Automated System for Adjustable Row Spacing of Hydroponic Gullies in Multilayer Plant Factory

  • Ashtiani-Araghi, Alireza;Lee, Chungu;Cho, Seong-In;Rhee, Joong-Yong
    • Journal of Biosystems Engineering
    • /
    • v.40 no.1
    • /
    • pp.35-46
    • /
    • 2015
  • Purpose: To present a flexible and accurate autonomous solution for creating any desired row spacing value between the hydroponic gullies in multilayer growing units, and evaluate the capabilities and performance of the relevant automated system through the use of virtual prototyping technique. Methods: To build the virtual prototype of the system, CAD models of its different parts, including an autonomous vehicle and the mechanical mechanisms embedded in the multilayer growing unit, were developed and imported into the RecurDyn simulation software. In order to implement the automated row spacing operation, three spacing modes with different loading cycles and working steps were defined, and the operation of the system was simulated to obtain the target row spacing values specified for each of these modes. Results: Motion profiles related to the horizontal displacement of: 1) the lower and upper sliding bars installed in the cultivation layers, and 2) the hydroponic gullies, during the simulation of the system operation, were generated and analyzed. No deviation from the specified target spacing values was observed at the end of simulations for all spacing modes. Conclusions: The results of the motion analysis obtained by simulating the system operation confirm the effectiveness of the control scheme proposed for automated row spacing of gullies. It was also found that proper sequencing of the loading cycles and the precision of the working strokes of the upper bars are the critical factors for establishing a certain row spacing value. Based on the simulation results, precise control of the back and forth motions of the upper bars is highly necessary for sound operation of the real system.

Changes of Impact Variables by the Change of Golf Club Length (골프 클럽에 따른 타격자세의 변화)

  • Sung, Rak-Joon
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.4
    • /
    • pp.181-189
    • /
    • 2005
  • To know the proper impact posture and changes for the various clubs, changes of impact variables according to the change of golf club length was investigated. Swing motions of three male low handicappers including a professional were taken using two high-speed video cameras. Four clubs iron 7, iron 5, iron 3 and driver (wood 1) were selected for this experiment. Three dimensional motion analysis techniques were used to get the kinematical variables. Mathcad and Kwon3D motion analysis program were used to analyze the position, distance and angle data in three dimensions. Major findings of this study were as follows. 1. Lateral position of the head remained more right side of the target up to 3.5cm compared to the setup as the length of the club increased. 2. Left shoulder raised up to 5cm and right shoulder lowered up to 2.5cm compared to setup. The shoulder line opened slightly (maximum 11 degrees) to the target line. 3. Forward lean angle of the trunk decreased up to 4 degrees (more erected) compared to setup. 4. Side lean angle of the trunk increased compared to setup and increased up to 16 degrees as the club length increased. 5. The pelvis moved to the target line direction horizontally and opened up to 31 degrees. Right hip moves laterally to the grip position at the setup. 6. Flexion of the left leg maintained almost constantly but the right leg flexed up to 11 degrees compared to setup. 7. Left arm is straightened but the right arm flexed about 20degrees compared to straight. 8. Center of the shoulders were in front of the knees and toes of the feet. 9. Hands moved to the left (8.7cm), forward (5.7cm) and upward (11.6cm) compared to the setup. This is because of the rotation of pelvis and shoulders. 10. Shaft angle to the ground was smaller than the lie angle of the clubs but it increased close to the lie of the clubs at impact.

Ground surface changes detection using interferometric synthetic aperture radar

  • Foong, Loke Kok;Jamali, Ali;Lyu, Zongjie
    • Smart Structures and Systems
    • /
    • v.26 no.3
    • /
    • pp.277-290
    • /
    • 2020
  • Disasters, including earthquakes and landslides, have enormous economic and social losses besides their impact on environmental disruption. Iran, and particularly its Western part, is known as an earthquake susceptible area due to numerous strong ground motions. Studying ecological changes due to climate change can improve the public and expert sector's awareness and response to future disastrous events. Synthetic Aperture Radar (SAR) data and Interferometric Synthetic Aperture Radar (InSAR) technologies are appropriate tools for modeling and surface deformation modeling. This paper proposes an efficient approach to detect ground deformation changes using Sentinel-1A. The focal point of this research is to map the ground surface deformation modeling is presented using InSAR technology over Sarpol-e Zahab on 25th November 2018 as a study case. For surface deformation modeling and detection of the ground movement due to earthquake SARPROZ in MATLAB programming language is used and discussed. Results show that there is a general ground movement due to the Sarpol-e Zahab earthquake between -7 millimeter to +18 millimeter in the study area. This research verified previous researches on the advanced image analysis techniques employed for mapping ground movement, where InSAR provides a reliable tool for assisting engineers and the decision-maker in choosing proper policies in a time of disasters. Based on the result, 574 out of 682 damaged buildings and infrastructures due to the 2017 Sarpol-e Zahab earthquake have moved from -2 to +17 mm due to the 2018 earthquake with a magnitude of 6.3 Richter. Results show that mountainous areas have suffered land subsidence, where urban areas had land uplift.

The Effects of a Low Intensity Excercise Program on Psychosocial Factors of Excercise and Physical Factors in Elderly Women (저강도 운동프로그램이 여성노인의 운동에 대한 사회.심리적 및 신체적 요인에 미치는 효과)

  • Nam, Mi-Ra;Kim, Young-Hee;Ahn, Ok-Hee;Yang, Bok-Sun
    • Research in Community and Public Health Nursing
    • /
    • v.18 no.3
    • /
    • pp.373-381
    • /
    • 2007
  • Purpose: An exercise program, which was composed of motions simple and easy to follow, was developed and applied to aged women as a way to improve their health conditions. Method: To ascertain the effects of the exercise, which was conducted twice a week and 16 times in total for 8 weeks from September 10 to November 5, 2005 in two experimental groups (31 Persons) and a control group (31 persons), this study conducted quasi-experiments of nonequivalent control group pre-post test design. Data were analyzed using SPSS/PC Win 10.0, the reliability of the measuring tools using Cronbach's alpha, the verification of equivalence for general properties and dependent variables using Chi-square test and t-test, and the verification of hypotheses using t-test and ANCOVA. Results: After the exercise program. the aged women showed profitable evaluation of decisional balance, high feeling of self-efficacy as well as improved subjective awareness of health. Their diastolic blood pressure and total cholesterol were also reduced significantly after the exercise. Conclusion: After the conduct of the exercise program for 8 weeks, aged women showed increased profitable decisional balance, self-efficacy and subjective awareness of health. This suggests that continuous and proper exercise is effective as an intervention for health improvement for the aged as well as the prevention of and recovery from geriatric diseases.

  • PDF

Calibration of Omnidirectional Camera by Considering Inlier Distribution (인라이어 분포를 이용한 전방향 카메라의 보정)

  • Hong, Hyun-Ki;Hwang, Yong-Ho
    • Journal of Korea Game Society
    • /
    • v.7 no.4
    • /
    • pp.63-70
    • /
    • 2007
  • Since the fisheye lens has a wide field of view, it can capture the scene and illumination from all directions from far less number of omnidirectional images. Due to these advantages of the omnidirectional camera, it is widely used in surveillance and reconstruction of 3D structure of the scene In this paper, we present a new self-calibration algorithm of omnidirectional camera from uncalibrated images by considering the inlier distribution. First, one parametric non-linear projection model of omnidirectional camera is estimated with the known rotation and translation parameters. After deriving projection model, we can compute an essential matrix of the camera with unknown motions, and then determine the camera information: rotation and translations. The standard deviations are used as a quantitative measure to select a proper inlier set. The experimental results showed that we can achieve a precise estimation of the omnidirectional camera model and extrinsic parameters including rotation and translation.

  • PDF

Development of an Unstructured 2-D Chimera Technique for Overlapped Bodies in Relative Motion (2차원 비정렬 중첩격자계를 이용한 서로 겹쳐진 물체간의 상대운동 해석기법 개발)

  • An, Sang-Jun;Gwon, O-Jun;Jeong, Mun-Seung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.2
    • /
    • pp.17-25
    • /
    • 2006
  • In the present study, a 2-D chimera technique for overlapped bodies in relative motion is developed using unstructured triangular meshes. The solid boundary nodes located next to the intersecting point between bodies are merged to the intersecting point to assure accurate representation of the intersecting region. In order to assign proper value of flow variables at the nodes located out of the computational field, interpolation is conducted for non-active nodes. For validation, the motions of a NACA64A006 airfoil and a NACA0012 airfoil with a plane flap are computed and the results are compared with other simulations. The motion of a launching missile ejected from a NACA0012 airfoil is also simulated.