• Title/Summary/Keyword: propellant type

Search Result 94, Processing Time 0.018 seconds

Current Status and Trends of Research and Development on Electric Thruster, Part I: Overseas (전기추력기 연구개발 현황과 동향, Part I: 해외)

  • Kim, Holak;Kim, Su-Kyum;Won, Su-Hee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.6
    • /
    • pp.95-108
    • /
    • 2019
  • Electric propulsion is a type of space propulsion with a high specific impulse by accelerating propellant using electrical energy and brings about reduction of the fuel mass and launch costs of satellites so that it is being extensively studied in the world. Electric thrusters are widely used for various purposes from micro satellites to large satellites and from low Earth orbit satellites to spacecraft for exploration. Recently, satellites using full-electric propulsion have been developed, and the number of satellites with electric propulsion is also gradually increasing. In this paper, the current status and trends of research on electric propulsion in the United States, Europe, and Japan will be reported.

Comparison of Combustion Performance between Single Injector Combustor and Sub-scale Combustor (액체로켓엔진 연소기용 단일 분사기 연소기와 축소형 연수고 수류/연소시험 결과 비교)

  • Kim, Seung-Han;Han, Yeoung-Min;Seo, Seong-Hyeon;Moon, Il-Yoon;Lee, Kwang-Jin
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.451-454
    • /
    • 2006
  • This paper describes the results of cold flow test and hot firing tests of an uni-element coaxial swirl injector and hot firing tests of a subscale combustor, as to the development effort of coaxial swirl injector for high performance liquid rocket engine combustor. A major design parameter for coaxial swirl injector is the recess number of a bi-swirl injector. The results of hot firing tests of the uni-element injector combustor and the sub-scale combustor are analyzed to investigate the effect of the recess number influencing on the combustion performance and pressure fluctuation. The test results of a cold flow test of the unielement combustor shows that it was shown that the change in recess number has significant effect on mixing characteristics and efficiency, while the effect of recess number on atomization characteristic is not The results of a series of firing tests using unielement and subscale combustor show that the recess length significantly affects the hydraulic characteristics, the combustion efficiency, and the dynamics of the liquid oxygen/kerosene bi-swirl injector. As a point of combustion performance, combustion efficiencies are 90% for unielement combustor and 95% for subscale combustor. The difference in the characteristic velocities between the unielement combustor and the subscale combustor may be caused by the difference in thermal loss to the combustor wall and the relative lengths of the combustion chamber. For a mixed type coaxial swirl combustor, the pressure drop across the injector increases as recess number becomes larger. The low frequency pressure fluctuation observed in unielement combustor can be related to the propellant mixing characteristics of the coaxial bi-swirl injector. The effect of the recess number on the pressure fluctuation inside the combustion chamber is more significant in un i-element combustor than the subscale combustor, of which the phenomena are also observed in time domain and frequency domain.

  • PDF

Atomization Characteristic of F-O-F Triplet Injector for Gas Generator (가스발생기용 F-O-F 충돌형 인젝터 분사특성)

  • Kwon, Sun-Tak;Lee, Chang-Jin;Kim, Seung-Han;Han, Yeoung-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.62-68
    • /
    • 2005
  • An injector for fuel rich gas generator was designed and experimentally investigated. Five variations of F-O-F triplet impinging type injector were tested to evaluate spray characteristics with kerosene/water simulant propellant. Test was focused to find the effect of design variables of impinging angle, and impinging distance, on the atomization performance. A mixing efficiency is used to compare droplet distribution and local O/F ratio of each injector in the range of momentum ratio of 0.2~1.3. Test results shows the max value of mixing efficiency locates about the 0.8 in momentum ratio. And the injector with an impinging angle of 45 degree and impinging distance of 6mm shows the very good performance result suitable for fuel rich gas generator. A combustion test will be also conducted with selected injector to verify the spray pattern and mixing efficiency.

Combustion Performance of a Pintle Injector Rocket Engine with Canted Slit Shape by Characteristic Length and Total Momentum Ratio (Canted Slit 형상의 핀틀 인젝터 로켓엔진의 특성길이와 운동량비에 따른 연소성능)

  • Yu, Isang;Kim, Sunhoon;Ko, Youngsung;Kim, Sunjin;Lee, Janghwan;Kim, Hyungmo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.1
    • /
    • pp.36-43
    • /
    • 2017
  • In this study, a pintle injector rocket engine which uses kerosene and liquid oxygen as propellants was manufactured by collecting basic design data and establishing a design procedure. Combustion performance of the liquid rocket engine was investigated by characteristic velocity efficiency with characteristic length of the combustion chamber and total momentum ratio. As a result of hot fire tests, it showed that the engine had shorter characteristic length comparing to those of other type injectors, which was known as recommended value with the propellant combination. Also, the characteristic velocity efficiency was greatly affected by total momentum ratio and almost constant within 1.0~1.5.