• 제목/요약/키워드: projectile penetration

검색결과 70건 처리시간 0.226초

침투시험에서의 콘크리트 표적크기 영향 분석 (Concrete Target Size Effect on Projectile Penetration)

  • 김석봉;유요한
    • 한국군사과학기술학회지
    • /
    • 제18권2호
    • /
    • pp.154-159
    • /
    • 2015
  • This paper deals with the effect of concrete target size on penetration of projectiles. We investigated the penetration depth and residual velocity of projectiles using the 2-D axial symmetric model. Most analysis were conducted with 13 kg projectile (striking velocity: 456.4 m/s) and concrete target with compressive strength of 39 MPa. This paper provided penetration depth (or residual velocity) versus ratio D/d (target diameter, D and projectile diameter, d). When the bottom of concrete cylinder was constrained, penetration depth converged to limit depth more than the ratio D/d of 36. The residual velocity of projectile with thin concrete target were investigated. The residual velocity was converged to specific velocity more than the ratio D/d of 16.

Comparing finite element and meshfree particle formulations for projectile penetration into fiber reinforced concrete

  • O'Daniel, James;Adley, Mark;Danielson, Kent;DiPaolo, Beverly;Boone, Nicholas
    • Computers and Concrete
    • /
    • 제7권2호
    • /
    • pp.103-118
    • /
    • 2010
  • Penetration of a fragment-like projectile into Fiber Reinforced Concrete (FRC) was simulated using finite element (FE) and particle formulations. Extreme deformations and failure of the material during the penetration event were modeled with multiple approaches to evaluate how well each represented the actual physics of the penetration process and compared to experimental data. A Fragment Simulating Projectile(FSP) normally impacting a flat, square plate of FRC was modeled using two target thicknesses to examine the different levels of damage. The thinner plate was perforated by the FSP, while the thicker plate captured the FSP and only allowed penetration part way through the thickness. Full three dimensional simulations were performed, so the capability was present for non-symmetric FRC behavior and possible projectile rotation in all directions. These calculations assessed the ability of the finite element and particle formulations to calculate penetration response while assessing criteria necessary to perform the computations. The numerical code EPIC contains the element and particle formulations, as well as the explicit methodology and constitutive models, needed to perform these simulations.

Numerical study on concrete penetration/perforation under high velocity impact by ogive-nose steel projectile

  • Islam, Md. Jahidul;Liu, Zishun;Swaddiwudhipong, Somsak
    • Computers and Concrete
    • /
    • 제8권1호
    • /
    • pp.111-123
    • /
    • 2011
  • Severe element distortion problem is observed in finite element mesh while performing numerical simulations of high velocity steel projectiles penetration/perforation of concrete targets using finite element method (FEM). This problem of element distortion in Lagrangian formulation of FEM can be resolved by using element erosion methodology. Element erosion approach is applied in the finite element program by defining failure parameters as a condition for element elimination. In this study strain parameters for both compression and tension at failure are used as failure criteria. Since no direct method exists to determine these values, a calibration approach is used to establish suitable failure strain values while performing numerical simulations of ogive-nose steel projectile penetration/perforation into concrete target. A range of erosion parameters is suggested and adopted in concrete penetration/perforation tests to validate the suggested values. Good agreement between the numerical and field data is observed.

판재를 이용한 초고속 위협체의 방호성능에 대한 해석적 연구 (Investigation Into Protection Performance of Projectile Using Flying Plate)

  • 최효성;신현호;유요한;박장현;김종봉
    • 한국정밀공학회지
    • /
    • 제33권12호
    • /
    • pp.1039-1045
    • /
    • 2016
  • We investigated the protection capability of a plate against high speed projectiles demonstrating collision and penetration behaviors by finite element analysis. The element erosion method was used for penetration analysis, which showed that the speed of the projectile was slightly reduced by the collision with the protection plate. Protection capability was measured by the projectile's attitude angle change because the damage of our tanks by projectiles was also dependent on the projectile-tank collision angle. When the length of the protection plate was sufficiently long, the projectile was severely deformed and incapacitated. In the case of a small plate, the projectile was deformed only in the collision region. Thus, projection capability was investigated by the change of attitude angle. The effect of collision angle, velocity, and length of the plate on the rotational and vertical velocities of the projectile was investigated.

폴리카보네이트 판의 경사충격에 의한 도비 거동 수치연구 (Numerical Study on Ricochet Behavior with Inclined Impact of Polycabonate Plates)

  • 양태호;이영신;조종현
    • 한국안전학회지
    • /
    • 제29권4호
    • /
    • pp.1-8
    • /
    • 2014
  • In this study, the numerical simulation using AUTODYN-3D program was investigated angle trajectory prediction for inclined impacts of projectiles. The penetration and perforation of polycarbonate plate by 7.62 mm projectile was investigated numerically. The characteristic structure of the projectile's trajectory in the polycabonate plates was studied. Two combined failure criteria were used in the target plate, and the target plate was modeled with the properties of polycarbonate for simulating the ricochet phenomenon. The effect of the angle of inclination on the trajectory and kinetic energy of the projectile were studied. The dynamic deformation behaviors tests of polycabonate were compared with numerical simulation results which can be used as predictive purpose. From the simulation, the ricochet phenomenon was occurred for angles of inclination of $0^{\circ}{\leq}{\theta}{\leq}20^{\circ}$. The projectile perforated the plate for ${\theta}{\leq}30^{\circ}$, thus defining a failure envelope for numerical configuration. The numerical analyses are used to study the effect of the projectile impact velocity on the depth of penetration (DOP). It can be observed that the residual velocities were almost linear relative to penetration velocities. It means that polycarbonate has high resistance at higher velocities.

고속충격을 받는 Ti/Al 적층재의 파괴거동에 관한 연구 (A study on the fracture behavior of Ti/Al laminates under high velocity impact)

  • 손세원;이두성;홍성희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.267-272
    • /
    • 2003
  • In order to investigate the effect of face material on Ti/Al alloy laminates under high velocity impact, a ballistic testing was conducted. Ballistic resistance of these materials was measured by protection ballistic limit($V_{50}$), a statistical velocity with 50% probability penetration. Fracture behaviors and ballistic tolerance, described by penetration modes, were respectfully observed, by $V_{50}$ test and Projectile Through Plates (PTP) test at velocities greater than $V_{50}$. PTP tests were conducted with $0^{\circ}$obliquity at room temperature using 5.56mm ball projectile. $V_{50}$ tests with $0^{\circ}$obliquity were also done with projectiles that were able to achieve near or complete penetration during PTP tests. Resistance to penetration, and penetration modes which face material was Titanium alloy, were compared to those which face material was anodized Al alloy after cold-rolling.

  • PDF

토양 내 J-hook 궤적을 고려한 침투해석 모델 개발 (Penetration Model in Soil Considering J-hook Trajectory)

  • 성승훈;지훈
    • 한국전산구조공학회논문집
    • /
    • 제35권1호
    • /
    • pp.1-8
    • /
    • 2022
  • 본 연구에서는 토양-탄체 간 분리 및 재접촉을 고려한 IFL 기반 침투해석 기술을 개발하고 이를 기존 문헌의 실험결과와 비교하는 연구를 수행했다. 탄체를 강체로 가정한 후, 토양 내로 침투 시 발생하는 구형공동팽창 현상을 고려함으로써 탄체의 궤적을 예측할 수 있다. 토양에 대한 저항함수는 Mohr-Coulomb 항복 모델을 활용했으며, 입사각 혹은 AOA에 따른 J-hook 현상을 모사할 수 있다. 기존 문헌에서의 실험결과(총 6회)와의 비교 결과, 수치해석으로부터 예측한 탄체의 침투 깊이는 실험대비 약 13.4%의 평균오차를 나타냈다. 일반적으로 탄체의 침투 경로를 예측하기 위해 유한요소법이 널리 활용된다. 하지만, 유한요소법 활용 시, 탄체의 모델링을 위해 많은 시간과 노력이 필요하며, 해석 수행을 위해 수 시간이 소요된다. 본 연구를 통해 개발한 모델을 활용할 시, 탄체의 치수 입력만 필요하며 해석 시간도 수 초 이내이다.

고강도콘크리트에 대한 기존 내충격 성능평가식의 비상체 선단형상계수 유효성 평가 실험 연구 (Experimental Study on Validation of Nose Shape Factors of Projectile in Existing Impact formulas for High-Strength Concrete)

  • 김상희;강현구;홍성걸
    • 대한건축학회논문집:구조계
    • /
    • 제35권2호
    • /
    • pp.13-20
    • /
    • 2019
  • This study was conducted in order to validate the nose shape factors of projectile in existing impact formulas for high-strength concrete in the event of collision with high-speed projectiles. In order to conduct the high-speed impact experiment, specified concrete strengths of 35, 100, and 120 MPa were prepared and tested in collision with both conical and hemispherical projectiles. The results showed that the measured penetration depth did not decrease linearly as concrete strength increased. Comparing the ratio penetration depth to the kinetic energy of the conical and hemispherical projectiles, the difference in the ratios for high strength concrete was observed to decline as concrete strength increased. However, in the modified NDRC and the Hughes formulas, the difference in the predicted penetration depth of the conical and hemispherical projectiles was constant despite increasing concrete strength. The modified NDRC and Hughes formulas should be improved upon so as to be applied to high strength concrete.

알루미늄 5052-H34 합금 적층재의 방탄성능과 파괴모드에 관한 연구 (A Study on the ballistic performance and fracture mode of anodized Aluminum 5052-H34 alloy laminates)

  • 손세원;김희재;박영의;홍성희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.507-512
    • /
    • 2000
  • The ob.jective of this study is to determine fracture behaviors(penetrati0n modes) and resistance to penetration duringballistic impact of Al 5052-H34 alloy laminates and anodized Al 5052-H34 alloy laminates. Resistance to penetration is determined by $V_{50}$ ballistic limit, a statical velocity with 50% probability for complete penetration, test method. Fracture behaviors and ballistic tolerance, described by penetration modes, are respectfully observed that result from V50 test and Projectile Through Plates (PTP) test at velocities greater than $V_{50}$. PTP tests were conducted with 0" obliquity at room temperature using 5.56mm ball projectile. $V_{50}$ tests with 0" obliquity at room temperature were conducted with projectiles that were able to achieve near or complete penetration during PTP tests. Surface Hardness, resistance to penetration, and penetration modes of A1 5052-H34 alloy laminates compared to those of anodized Al 5052-H34 alloy laminates.y laminates.

  • PDF

PVD처리한 티타늄 합금의 고속충격 거동에 관한 연구 (A Study on the high velocity impact behavior of titanium alloy by PVD method)

  • 손세원;이두성;홍성희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.567-572
    • /
    • 2001
  • In order to investigate the fracture behaviors(penetration modes) and resistance to penetration during ballistic impact of Titanium alloy laminates and nitrified Titanium alloy laminates which were treated by PVD(Physical Vapor Deposition) method, ballistic tests were conducted. Evaporation, sputtering, and ion plating are three kinds of PVD method. In this research, Ion plating was used to achieve higher surface hardness and surface hardness test were conducted using a Micro vicker's hardness tester. Resistance to penetration is determined by the protection ballistic limit($V_{50}$), a statistical velocity with 50% probability for complete penetration. Fracture behaviors and ballistic tolerance, described by penetration modes, are respectfully observed at and above ballistic limit velocities, as a result of $V_{50}$ test and Projectile Through Plates (PTP) test methods. PTP tests were conducted with $0^{\circ}$ obliquity at room temperature using 5.56mm ball projectile. $V_{50}$ test with $0^{\circ}$ obliquity at room temperature were conducted with projectiles that were able to achieve near or complete penetration during PTP tests. Surface hardness, resistance to penetration, and penetration modes of Titanium alloy laminates are compared to those of nitrified Titanium alloy laminates.

  • PDF