• Title/Summary/Keyword: project effectiveness

Search Result 859, Processing Time 0.025 seconds

A Study on the Utilization of Retired Professionals for SME's Smart Factory Construction: Focusing on the Mediating Effect of Smart Meister Competence (중소기업의 스마트팩토리 구축을 위한 퇴직전문인력 활용에 관한 연구: 스마트 마이스터 역량의 매개효과를 중심으로)

  • Koo, Il Seob
    • Journal of the Korea Safety Management & Science
    • /
    • v.23 no.4
    • /
    • pp.83-92
    • /
    • 2021
  • The construction of smart factories for government SMEs is not easy due to the lack of professional manpower. The use of retired professionals is a way to solve the problem to some extent and to solve the job problem of seniors by effectively utilizing social assets. This study examines the effectiveness of using Meister based on a survey of 195 companies participating in the Smart Meister Support Program. As a result, the better pre-participation readiness and the better management and coordination of change during the participation, the more significant influence was on Meister's ability development and corporate performance. In particular, it was confirmed that Meister's competence plays a role in both 'pre-participation readiness and business performance' and 'between change management during participation and business performance'. In order to improve the performance of the smart meister business in the future, it is necessary to proactively promote the purpose and purpose of the business targeting companies that wish to participate in the business. In addition, it was found that it is necessary to support the development of change management in order to minimize the resistance to innovation during the project. It will be possible to enhance social competitiveness by resolving senior jobs and strengthening the competitiveness of SMEs by discovering and utilizing Meister, who is an expert among retirees.

Forecasting tunnel path geology using Gaussian process regression

  • Mahmoodzadeh, Arsalan;Mohammadi, Mokhtar;Abdulhamid, Sazan Nariman;Ali, Hunar Farid Hama;Ibrahim, Hawkar Hashim;Rashidi, Shima
    • Geomechanics and Engineering
    • /
    • v.28 no.4
    • /
    • pp.359-374
    • /
    • 2022
  • Geology conditions are crucial in decision-making during the planning and design phase of a tunnel project. Estimation of the geology conditions of road tunnels is subject to significant uncertainties. In this work, the effectiveness of a novel regression method in estimating geological or geotechnical parameters of road tunnel projects was explored. This method, called Gaussian process regression (GPR), formulates the learning of the regressor within a Bayesian framework. The GPR model was trained with data of old tunnel projects. To verify its feasibility, the GPR technique was applied to a road tunnel to predict the state of three geological/geomechanical parameters of Rock Mass Rating (RMR), Rock Structure Rating (RSR) and Q-value. Finally, in order to validate the GPR approach, the forecasted results were compared to the field-observed results. From this comparison, it was concluded that, the GPR is presented very good predictions. The R-squared values between the predicted results of the GPR vs. field-observed results for the RMR, RSR and Q-value were obtained equal to 0.8581, 0.8148 and 0.8788, respectively.

TASK PLANNING AND VISUALIZATION SYSTEM FOR INTELLIGENT EXCAVATING SYSTEM

  • Jeong-Hwan Kim;Seung-Soo Lee;Jin-Woong Park;Ji-Hyeok Yoon;Jong-Won Seo
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.457-463
    • /
    • 2009
  • The earthwork is essential procedure for all civil engineering projects. Because of its importance in terms of cost and time, it should be managed effectively. In light of this, The Intelligent Excavating System (IES) research consortium has established to improve the productivity, quality and safety of current excavating/earthwork system by the Ministry of Land, Transportation and Maritime Affairs (MLTM) of Korea. This paper summarizes ongoing research aimed at development knowledge and presents a framework of task planning and visualization system for IES. The task planning and visualization system consists of three functions. 1) Using digital terrain model which created by 3D laser scanner, the system can divide it and generates global/local work area so that the excavator can work through the area. 2) In order to operate and/or control the excavator, the system exports the location, paths of boom, arm and bucket data of the excavator to control center. 3) The task planning system is visualized on the computer programming aided-graphic interface which simulates the planned work processes and eventually assists the operator for the control of the excavator. The case study which we have performed, demonstrates the effectiveness of the proposed system.

  • PDF

Development of an Algorithm for the Automatic Quantity Estimation of Wall Rebar

  • Kim, Do-Yeong;Suh, Sangwook;Kim, Sunkuk;Lwun Poe Khant
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.5
    • /
    • pp.83-94
    • /
    • 2023
  • In order to devise a rebar usage optimization algorithm, it is necessary to calculate the exact rebar length and revise the arrangement of rebars into special lengths. However, the process of rearranging numerous rebars and manually calculating their quantities is time-consuming and requires significant human resources. To address this challenge, it is necessary to develop an algorithm that can automatically estimate the length of rebars and calculate their quantities. This study aims to create an automatic estimation algorithm that improves work efficiency while ensuring accurate and reliable calculations of rebar quantities. The algorithm considers various factors such as concrete cover, hook length, development length, and lapping length, mandated by the building codes, to calculate the quantity of rebars for wall structures. The effectiveness of the proposed method is validated by comparing the rebar quantities generated by the algorithm with manually calculated quantities, resulting in a difference rate of 1.14% for the hook case and 1.37% for the U-bar case. The implementation of this method enables fast and precise estimation of rebar quantities, adhering to relevant regulatory codes.

Enhancing Occlusion Robustness for Vision-based Construction Worker Detection Using Data Augmentation

  • Kim, Yoojun;Kim, Hyunjun;Sim, Sunghan;Ham, Youngjib
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.904-911
    • /
    • 2022
  • Occlusion is one of the most challenging problems for computer vision-based construction monitoring. Due to the intrinsic dynamics of construction scenes, vision-based technologies inevitably suffer from occlusions. Previous researchers have proposed the occlusion handling methods by leveraging the prior information from the sequential images. However, these methods cannot be employed for construction object detection in non-sequential images. As an alternative occlusion handling method, this study proposes a data augmentation-based framework that can enhance the detection performance under occlusions. The proposed approach is specially designed for rebar occlusions, the distinctive type of occlusions frequently happen during construction worker detection. In the proposed method, the artificial rebars are synthetically generated to emulate possible rebar occlusions in construction sites. In this regard, the proposed method enables the model to train a variety of occluded images, thereby improving the detection performance without requiring sequential information. The effectiveness of the proposed method is validated by showing that the proposed method outperforms the baseline model without augmentation. The outcomes demonstrate the great potential of the data augmentation techniques for occlusion handling that can be readily applied to typical object detectors without changing their model architecture.

  • PDF

AR-based 3D Digital Map Visualization Support Technology for Field Application of Smart Construction Technology

  • Song, Jinwoo;Hong, Jungtaek;Kwon, Soonwook
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1255-1255
    • /
    • 2022
  • Recently, research on digital twins to generate digital information and manage construction in real-time using advanced technology is being conducted actively. However, in the construction industry, it is difficult to optimize and apply digital technology in real-time due to the nature of the construction industry in which information is constantly fluctuating. In addition, inaccurate information on the topography of construction projects is a major challenge for earthmoving processes. In order to ultimately improve the cost-effectiveness of construction projects, both construction quality and productivity should be addressed through efficient construction information management in large-scale earthworks projects. Therefore, in this study, a 3D digital map-based AR site management work support system for higher efficiency and accuracy of site management was proposed by using unmanned aerial vehicles (UAV) in wide earthworks construction sites to generate point cloud data, building a 3D digital map through acquisition and analysis of on-site sensor-based information, and performing the visualization with AR at the site By utilizing the 3D digital map-based AR site management work support system proposed in this study, information is able to be provided quickly to field managers to enable an intuitive understanding of field conditions and immediate work processing, thereby reducing field management sluggishness and limitations of traditional information exchange systems. It is expected to contribute to the improvement of productivity by overcoming factors that decrease productivity in the construction industry and the improvement of work efficiency at construction sites.

  • PDF

Virtual Reality Safety Training on Multiple Platforms

  • Bao, Quy Lan;Tran, Si Van-Tien;Nguyen, Truong Linh;Park, Chansik
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1187-1193
    • /
    • 2022
  • A construction site is a highly complex and constantly changing environment, where hazardous areas are difficult to detect if workers lack sufficient knowledge and awareness. Thus, frequent worker safety training is required. Numerous studies on using virtual reality (VR) for safety training were published. While they demonstrate the potential for improving the skills necessary to avoid accidents in the construction industry, they remain difficult to apply at actual construction sites. VR requires specialized hardware and software, limiting workers' access and restricting workers' participation in training sessions. As a result, this paper proposes multiple platforms for immersive virtual reality safety training (VRMP) based on Industry Foundation Classes (IFC) and web technologies such as immersive web (WebXR). The VRMP is compatible with mobile and desktop devices currently by workers and demonstrates scenario models familiar to workers. Also, it reduces development time by utilizing Building Information Models (BIM). Additionally, The VRMP collects data from workers in a virtual environment to assess each worker's safety level, assisting workers in effectively and comfortably gaining a better understanding and raising their awareness. This paper develops a case study based on the VRPM in order to assess its effectiveness.

  • PDF

Clinical evaluation of Laser-Assisted New Attachment Procedure® (LANAP®) surgical treatment of chronic periodontitis: a retrospective case series of 1-year results in 22 consecutive patients

  • Raymond A. Yukna
    • Journal of Periodontal and Implant Science
    • /
    • v.53 no.3
    • /
    • pp.173-183
    • /
    • 2023
  • Purpose: Treatment for periodontitis has evolved over the years as new technologies have become available. Currently, lasers seem attractive as a treatment modality, but their effectiveness needs to be verified. The purpose of this project was to evaluate Laser Assisted New Attachment Procedure® (LANAP®) surgery as a single treatment modality. Methods: As part of a mandatory training program for periodontists and other dentists, 22 consecutive patients diagnosed with moderate to severe periodontitis (probing depth [PD] up to 11 mm) were treated with the LANAP® surgical approach using a 1064-nm Nd:YAG laser as part of a multi-step protocol. Following single-session active therapy, they were entered into a maintenance program. Their clinical status was re-evaluated at 12-18 months following surgery. Results: All 22 patients completed the 12- to 18-month follow-up. PD, clinical attachment level, and furcation (FURC) showed substantial improvement. Recession was minimal (mean, 0.1 mm), while 93.5% of PD measurements were 3 mm or less at re-evaluation. Furthermore, 40% of grade 2 FURC closed clinically. Conclusions: Within the limits of this case series, LANAP® was found to be an effective, minimally invasive, laser surgical therapy for moderate to advanced periodontitis.

Research on Facility Layout of Prefabricated Building Construction Site

  • Yang, Zhehui;Lu, Ying;Zhang, Xing;Sun, Mingkang;Shi, Yufeng
    • International conference on construction engineering and project management
    • /
    • 2017.10a
    • /
    • pp.42-51
    • /
    • 2017
  • Due to the high degree of mechanization and the good environmental benefits, the prefabricated buildings are being promoted in China. The construction site layout of the prefabricated buildings has important influence on its safety benefit. However, few scholars have studied the safety problem on it. Firstly, in order to give a follow-up study foreshadowing the characteristics of prefabricated buildings are analyzed, the research assumptions are given and three types of safety buffers are established. And then a mult-objective model for the prefabricated buildings site layout is presented: taking into account the limits of noise, the coverage of the tower crane and the possibility of exceeding boundaries and overlapping, the constraints are and designed established respectively; Based on the improved System Layout Planning (SLP) method, the efficiency\cost\safety interaction matrices among the facilities are also founded for objective function. For the sake of convenience, a hypothetical facility layout case of the prefabricated building is used, the optimal solution of that is obtained in MATLAB with particle swarm algorithm (PSO), which proves the effectiveness of the model presented in this paper.

  • PDF

Critical Assessment of Programme-Based Conflict Resolution Model Applied to Multiple Stakeholders Within The Context of Industrialized Building Production and Life Cycle Supply Chain System

  • Tanaka, Koji
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.551-562
    • /
    • 2022
  • The building production system has been analysed by the dichotomy "employer-contractor" relationship, which failed to take into account of the role and function of multiple stakeholders within the life-cycle supply chain. This is further observed in the current conflict resolution model, which, in my argument, struggles to contribute to industrialize the building production and achieve better efficiency and effectiveness as expected. The purpose of this paper is to critically assess the issues of current programme-based conflict resolution model, and discuss alternative models how they can be modelled and applied to the construction projects. The conclusions of findings are; First, the current model is framed around the contracts and dispute resolutions based on the legal concept of "claimant and respondent" where one party(s) advances a claim once and the other(s) objects, as such it fails to reflect the nature of construction projects where multiple stakeholders are involved concurrently and for a long period of life-cycle of buildings. Second, an alternative is "Six-stakeholders model" which represents the multiple stakeholders and clarifies the flow of obligation-liability-monetary relationships among participants for a long period of life-cycle of buildings. Further, with reference to both historical and recent cases, a reflection and insight into pros and cons of programming method is added, especially as to why this method is considered to have become a mandate of the modern construction management, and how academics and practitioners should deal with it more cautiously and prudently.

  • PDF