• Title/Summary/Keyword: program motion

Search Result 1,222, Processing Time 0.029 seconds

Development of Simulation Model for Power Tiller Motion (동력경운기(動力耕耘機)의 운동(運動) 시뮬레이션을 위한 모델 개발(開發))

  • Kim, K.U.
    • Journal of Biosystems Engineering
    • /
    • v.12 no.2
    • /
    • pp.1-15
    • /
    • 1987
  • A mathematical model is developed and computer programmed for simulation of power tiller motion. The model consists of a main body and two driving wheels resulting in an 8 degrees of freedom system. Drawbar loading is also included by coupling the model with a sub-model representing the implement to be used. The computer program SIMPTL can predict motion characteristics and static stability of power tiller under a given set of ground and operation conditions.

  • PDF

INFRARED PHOTOMETRIC STUDY OF FIELD POPULATION II STARS

  • LEE SANG-GAK;BRUCE W. CARNEY;ROBERT PROBST
    • Journal of The Korean Astronomical Society
    • /
    • v.30 no.1
    • /
    • pp.1-11
    • /
    • 1997
  • Near infrared JHK magnitudes are presented for two hundred two high proper motion stars. We have observed high proper motion stars in the near-infrared bands(JHK) using the COB detector on the Kitt Peak 1.3m, 2.1m and 4m telescopes. The observations and data reduction procedures are described. The infrared color magnitude diagram and color-color diagrams for the program stars are presented.

  • PDF

Rollover Propensity Analysis of A Jeep Vehicle (지프차량의 전복성향 해석)

  • 백운경
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.4
    • /
    • pp.85-92
    • /
    • 1999
  • Vehicle rollover is an important issue for the traffic safety. Rollover can occur from the driver's action, the vehicle characteristics, or the road condition. This study is about the rollover propensity analysis of a jeep vehicle using the steering and braking maneuver, which is the combined result by the driver and the vehicle. Simple equations of roll motion is used to analyze the roll motion and a special purpose vehicle dynamics program is used to simulate the rollover of the jeep vehicle. From the simulation, an incipient rollover motion of the vehicle was found. However, the more complete rollover propensity analysis would require further investigation using roll dynamic sensitivity study.

  • PDF

A Research on the Development of CAI Courseware on the Motion of Falling Body (낙체운동에 관한 컴퓨터보조학습 코스웨어 개발 연구)

  • Koo, Duk-Gil;Sung, Jae-Soo
    • Journal of The Korean Association For Science Education
    • /
    • v.10 no.2
    • /
    • pp.49-54
    • /
    • 1990
  • The purpose of this paper is to promote the physics study of high school students with computer. A computer simulation for falling motion is used to provide the students a chance to study by themselves viewing the concrete motion pictures of computer. By this simulation program, the students can observe various movements of a falling body with calculated distance according to falling time.

  • PDF

Appropriate Input Earthquake Motion for the Verification of Seismic Response Analysis by Geotechnical Dynamic Centrifuge Test (동적원심모형 시험을 이용한 부지응답해석 검증시 입력 지진의 결정)

  • Lee, Jin-Sun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.209-217
    • /
    • 2013
  • In order to verify the reliability of numerical site response analysis program, both soil free-field and base rock input motions should be provided. Beside the field earthquake motion records, the most effective testing method for obtaining the above motions is the dynamic geotechnical centrifuge test. However, need is to verify if the motion recorded at the base of the soil model container in the centrifuge facility is the true base rock input motion or not. In this paper, the appropriate input motion measurement method for the verification of seismic response analysis is examined by dynamic geotechnical centrifuge test and using three-dimensional finite difference analysis results. From the results, it appears that the ESB (equivalent shear beam) model container distorts downward the propagating wave with larger magnitude of centrifugal acceleration and base rock input motion. Thus, the distortion makes the measurement of the base rock outcrop motion difficult which is essential for extracting the base rock incident motion. However, the base rock outcrop motion generated by using deconvolution method is free from the distortion effect of centrifugal acceleration.

Numerical Investigation of Motion Response of the Tanker at Varying Vertical Center of Gravities

  • Van Thuan Mai;Thi Loan Mai;Hyeon Kyu Yoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.1-9
    • /
    • 2024
  • The vertical center of gravity (VCG) has a significant impact on the roll motion response of a surface ship, particularly oil tankers based on the oil level in the tanker after discharging oil at several stations or positional changes, such as changes in the superstructure and deck structure. This study examined the motion response of the Korea very large crude carrier 2 (KVLCC2) at various VCGs, especially roll motion when the VCG changed. The potential theory in the Ansys AQWA program was used as a numerical simulation method to calculate the motion response. On the other hand, the calculations obtained through potential theory overestimated the roll amplitudes during resonance and lacked precision. Therefore, roll damping is a necessary parameter that accounts for the viscosity effect by performing an experimental roll decay. The roll decay test estimated the roll damping coefficients for various VCGs using Froude's method. The motion response of the ship in regular waves was evaluated for various VCGs using the estimated roll-damping coefficients. In addition, the reliability of the numerical simulation in motion response was verified with those of the experiment method reported elsewhere. The simulation results showed that the responses of the surge, sway, heave, pitch, and yaw motion were not affected by changing the VCG, but the natural frequency and magnitude of the peak value of the roll motion response varied with the VCG.

Determination of Optimum Threshold for Accuracy of People-counting System Based on Motion Detection

  • Ryu, Hanseul;Song, Junho;Lee, Boram;Lee, Kiyoung
    • Journal of Environmental Health Sciences
    • /
    • v.41 no.5
    • /
    • pp.299-304
    • /
    • 2015
  • Objectives: A people-counting system measures real-time occupancy through motion detection. Accurate people-counting can be used to calculate suitable ventilation demands. This study determined the optimum motion threshold for a people-counting system. Methods: In a closed room with two occupants moving constantly, different thresholds were tested for the accuracy of a people-counting system. The experiments were conducted at 150, 300, 450 and 600 lux. These levels of brightness included the illumination levels of most public indoor areas. The experiments were repeated with three types of clothing coloration. Results: Overall, a threshold of 16 provided the lowest mean error percentage for the people-counting system. Brightness and clothing color did not have a significant impact on the results. Conclusion: A people-counting system could be used with threshold of 16 for most indoor environments.

Paddling Posture Correction System Using IMU Sensors

  • Kim, Kyungjin;Park, Chan Won
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.86-92
    • /
    • 2018
  • In recent times, motion capture technology using inertial measurement unit (IMU) sensors has been actively used in sports. In this study, we developed a canoe paddle, installed with an IMU and a water level sensor, as a system tool for training and calibration purposes in water sports. The hardware was fabricated to control an attitude heading reference system (AHRS) module, a water level sensor, a communication module, and a wireless charging circuit. We also developed an application program for the mobile device that processes paddling motion data from the paddling operation and also visualizes it. An AHRS module with acceleration, gyro, and geomagnetic sensors each having three axes, and a resistive water level sensor that senses the immersion depth in the water of the paddle represented the paddle motion. The motion data transmitted from the paddle device is internally decoded and classified by the application program in the mobile device to perform visualization and to operate functions of the mobile training/correction system. To conclude, we tried to provide mobile knowledge service through paddle sport data using this technique. The developed system works reasonably well to be used as a basic training and posture correction tool for paddle sports; the transmission delay time of the sensor system is measured within 90 ms, and it shows that there is no complication in its practical usage.

Design of a C-based Independent Motion Controller using CAD&CAM (CAD&CAM을 활용한 C기반 독립형 모션 제어기 설계)

  • Kim, Sam-Taek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.5
    • /
    • pp.105-110
    • /
    • 2016
  • Recently, as to changes in the paradigm of domestic manufacturing CNC industry, the application of advanced technologies in machine tools are actively being pursued. IT in responsible for controlling it is the most important part in the field of CNC. The biggest lack of the necessary expertise in the field of motion control in CNC is coding G-Code in setting adjust coordinate directly and convert it through expensive foreign s/w rather than using windows language in PC based controller. In this paper, We implemented G-Code convert program that is change various type of CAD data to G-Code data and CAD/CAM application program and developed exclusive motion controller which is to run a robot directly using changed data.

Time-domain analysis of nonlinear motion responses and structural loads on ships and offshore structures: development of WISH programs

  • Kim, Yong-Hwan;Kim, Kyong-Hwan;Kim, Jae-Han;Kim, Tae-Young;Seo, Min-Guk;Kim, Yoo-Il
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.1
    • /
    • pp.37-52
    • /
    • 2011
  • The present paper introduced a computer program, called WISH, which is based on a time-domain Rankine panel method. The WISH has been developed for practical use to predict the linear and nonlinear ship motion and structural loads in waves. The WISH adopts three different levels of seakeeping analysis: linear, weakly-nonlinear and weak-scatterer approaches. Later, WISH-FLEX has been developed to consider hydroelasticity effects on hull-girder structure. This program can solve the springing and whipping problems by coupling between the hydrodynamic and structural problems. More recently this development has been continued to more diverse problems, including the motion responses of multiple adjacent bodies, the effects of seakeeping in ship maneuvering, and the floating-body motion in finite-depth domain with varying bathymetry. This paper introduces a brief theoretical and numerical background of the WISH package, and some validation results. Also several applications to real ships and offshore structures are shown.