• Title/Summary/Keyword: profiles steel

검색결과 171건 처리시간 0.022초

Theoretical Determination of Transfer Length in Pretensioned Members Using Thick Cylinder Theory

  • Oh, Byung-Hwan;Kim, Eui-Sung
    • KCI Concrete Journal
    • /
    • 제12권2호
    • /
    • pp.31-43
    • /
    • 2000
  • The extensive usage of pretensioned prestressed concrete component in modem construe- tion as structural members mandates precise understanding of its mechanism. Especially, an adequate transfer of prestressing force from steel tendons to concrete around the end regions of the member is a critical issue. Due to the importance of the topic, several investigators have formulated equations modeling the transfer bond length based on various bonding mechanism between steel and concrete. However, the existing models are still inadequate in predicting the bond development in pretensioned prestressed concrete members. Therefore, this study presents a model of transfer bond length based on rational theory that can simulate experimental results. The model is developed into solid mechanics based structural analysis computer program. The program is validated by comparing the analysis results with experimental results of bond stress distribution, concrete strain profiles, and transfer length in pretensioned prestressed concrete members. The proposed analytical procedure in this study can be utilized as a useful tool for realistic evaluation of transfer length in pretensioned prestressed concrete members.

  • PDF

The Effects of Die Design and Die Series on the Surface Residual Stress of Cold Drawn Eutectoid Steel Wire (고탄소강 와이어의 냉간 인발시 다이 디자인과 다이 시리즈가 표면 잔류 응력에 미치는 영향)

  • Bae S. G.;Yang Y. S.;Ban D. Y.;Park C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.418-422
    • /
    • 2005
  • In this study, the die design and die series on the surface residual stress of cold drawn eutectoid steel wire has been investigated. Test pieces were fabricated using die series with different mean and final reduction ratio. Surface residual stresses in the axial direction were measured by X-ray diffraction, Broker's 2-dimensional GADDS system. Results were compared with stress profiles which were calculated by 3D and 2D finite element simulation, Hibbitt's ABAQUS 6.4 program in Finite Element Analysis. By means of FEA method, optimal die shape considering delta-parameter were induced and applied in order to determine die sequence designs. Balance of the drawing stresses was also introduced to optimize die sequence.

  • PDF

The Effects of Die Design and Die Series on the Surface Residual Stress of Cold Drawn Eutectoid Steel Wire (고탄소강 와이어의 냉간 인발 시 다이 디자인과 다이 시리즈가 표면 잔류 응력에 미치는 영향)

  • Bae, J.G.;Yang, Y.S.;Ban, D.Y.;Park, C.G.
    • Transactions of Materials Processing
    • /
    • 제15권2호
    • /
    • pp.153-157
    • /
    • 2006
  • In this study, the die design and die series on the surface residual stress of cold drawn eutectoid steel wire have been investigated. Test pieces were fabricated using die series with different mean and final reduction ratios. Surface residual stresses in the axial direction were measured by X-ray diffraction, Bruker's 2-dimensional GADDS system. The results were compared with stress profiles that were calculated by 3D and 2D finite element simulations, ABAQUS 6.4 program in finite element analysis(FEA). By means of the FEA method, optimal die shape considering delta-parameter were induced and applied in order to determine die sequence designs. Balance of the drawing stresses was also introduced to optimize die sequence.

Cold-formed steel channel columns optimization with simulated annealing method

  • Kripka, Moacir;Chamberlain Pravia, Zacarias Martin
    • Structural Engineering and Mechanics
    • /
    • 제48권3호
    • /
    • pp.383-394
    • /
    • 2013
  • Cold-formed profiles have been largely used in the building industry because they can be easily produced and because they allow for a wide range of sections and thus can be utilized to meet different project requirements. Attainment of maximum performance by structural elements with low use of material is a challenge for engineering projects. This paper presents a numerical study aimed at minimizing the weight of lipped and unlipped cold-formed channel columns, following the AISI 2007 specification. Flexural, torsional and torsional-flexural buckling of columns was considered as constraints. The simulated annealing method was used for optimization. Several numerical simulations are presented and discussed to validate the proposal, in addition to an experimental example that qualifies its implementation. The ratios between lips, web width, and flange width are analyzed. Finally, it may be concluded that the optimization process yields excellent results in terms of cross-sectional area reduction.

Effects of Diverse Water Pipe Materials on Bacterial Communities and Water Quality in the Annular Reactor

  • Jang, Hyun-Jung;Choi, Young-June;Ka, Jong-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권2호
    • /
    • pp.115-123
    • /
    • 2011
  • To investigate the effects of pipe materials on biofilm accumulation and water quality, an annular reactor with the sample coupons of four pipe materials (steel, copper, stainless steel, and polyvinyl chloride) was operated under hydraulic conditions similar to a real plumbing system for 15 months. The bacterial concentrations were substantially increased in the steel and copper reactors with progression of corrosion, whereas those in stainless steel (STS) and polyvinyl chloride (PVC) reactors were affected mainly by water temperature. The heterotrophic plate count (HPC) of biofilms was about 100 times higher on steel pipe than other pipes throughout the experiment, with the STS pipe showing the lowest bacterial number at the end of the operation. Analysis of the 16S rDNA sequences of 176 cultivated isolates revealed that 66.5% was Proteobacteria and the others included unclassified bacteria, Actinobacteria, and Bacilli. Regardless of the pipe materials, Sphingomonas was the predominant species in all biofilms. PCR-DGGE analysis showed that steel pipe exhibited the highest bacterial diversity among the metallic pipes, and the DGGE profile of biofilm on PVC showed three additional bands not detected from the profiles of the metallic materials. Environmental scanning electron microscopy showed that corrosion level and biofilm accumulation were the least in the STS coupon. These results suggest that the STS pipe is the best material for plumbing systems in terms of the microbiological aspects of water quality.

A study on the Fabrication of Graded-Boundary Ni-Cr/Steel Material by Laser Beam (레이저빔에 의한 계면경사 Ni-Cr/steel 재료 제조에 관한 연구)

  • 김재현;김도훈
    • Laser Solutions
    • /
    • 제3권1호
    • /
    • pp.29-37
    • /
    • 2000
  • For a development purpose of thick metal / metal Graded-Boundary Materials(GBM), a basic research on the fabrication of Ni-Cr/steel GBM was carried out by a laser beam and its mechanical properties and thermal characteristics were investigated. In order to produce a compositionally graded boundary region between substrate steel and added Ni-Cr alloy, a series of surface alloying treatments was performed with a high power CO$_2$ laser beam. Ni-Cr sheet was placed on a low carbon steel plate(0.18%C), and then a CO$_2$ laser beam was irradiated on the surface to produce a homogeneous alloyed layer. On this first surface-alloyed layer, another Ni-Cr sheet was placed and then the CO$_2$ laser beam was irradiated again to produce second surface-alloyed layer. Sequential repetitions of laser surface alloying treatment 4 times resulted in a graded-boundary region with the thickness of about 1.4mm. Simultaneous concentration profiles of different kinds of alloying elements(Ni and Cr) showed from 42%Ni, 45%Cr and 13%Fe on surface region to 0%Ni, 0%Cr and 99%Fe in substrate region. Also a thermal conductivity gradient resulted in graded-region and its value changed from 0.03㎈/cm s$\^{C}$ in surface region to 0.1㎈/cm s$\^{C}$ in substrate region. Microstructural observation showed that any visible root porosities and solidification shrinkage cracks were not formed in graded region between alloyed layer and substrate region during rapid cooling.

  • PDF

Analysis of three-dimensional thermal gradients for arch bridge girders using long-term monitoring data

  • Zhou, Guang-Dong;Yi, Ting-Hua;Chen, Bin;Zhang, Huan
    • Smart Structures and Systems
    • /
    • 제15권2호
    • /
    • pp.469-488
    • /
    • 2015
  • Thermal loads, especially thermal gradients, have a considerable effect on the behaviors of large-scale bridges throughout their lifecycles. Bridge design specifications provide minimal guidance regarding thermal gradients for simple bridge girders and do not consider transversal thermal gradients in wide girder cross-sections. This paper investigates the three-dimensional thermal gradients of arch bridge girders by integrating long-term field monitoring data recorded by a structural health monitoring system, with emphasis on the vertical and transversal thermal gradients of wide concrete-steel composite girders. Based on field monitoring data for one year, the time-dependent characteristics of temperature and three-dimensional thermal gradients in girder cross-sections are explored. A statistical analysis of thermal gradients is conducted, and the probability density functions of transversal and vertical thermal gradients are estimated. The extreme thermal gradients are predicted with a specific return period by employing an extreme value analysis, and the profiles of the vertical thermal gradient are established for bridge design. The transversal and vertical thermal gradients are developed to help engineers understand the thermal behaviors of concrete-steel composite girders during their service periods.

A new developed approach for EDL induced from a single concentrated force

  • Bekiroglu, Serkan;Arslan, Guray;Sevim, Baris
    • Steel and Composite Structures
    • /
    • 제21권5호
    • /
    • pp.1105-1119
    • /
    • 2016
  • In this study, it is presented that a new developed approach for equivalent area-distributed loading (EADL) induced from a single concentrated force. For the purpose, a full scale 3D steel formwork system was constructed in laboratory conditions. A developed load transmission platform was put on the formwork system and loaded step by step on the mass center. After each load increment, displacement was measured in several crictical points of the system. The developed platform which was put in to slab of formwork to equivalently distribute the load from a point to the whole slab was constituted using I profiles. A 3D finite element model of the formwork system was analyzed to compare numerical displacement results with experimental ones. In experimental tests,difference among the displacements obtained from reference numerical model (model applied EADL) and main numerical model (model applied single load using a load cell via load transmission platform) is about %13 in avarage. Difference among the displacements obtained from experimental results and main numerical model under 30 kN single load is about %11 in avarage. The results revealed that the displacements obtained experimentally and numerically are dramatically closed to each other. It is highlighted from the study that the developed approach is reliable and useful to get EDL.

The Change of Full Width Half Maximum and Residual Stress during Fatigue Process in S45C Steel (피로과정에서 S45C강의 반가폭과 잔류응력의 변화양상)

  • Boo, Myung-Hwan;Park, Young-Chul;Kim, Byeong-Soo;Lee, Jong-Moon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • 제22권5호
    • /
    • pp.539-544
    • /
    • 2002
  • The purpose of this study is to examine the change of full width half maximum(FWHM) and residual stress during fatigue process in S45C Steel, by X-ray diffraction. For S45C Steel, the relationship between the change in fatigue damage of the specimen and the FWHM, and residual stress of X-ray diffraction profiles during the fatigue processes has been investigated. The FWHM decreases in the early period of fatigue cycle. The change of FWHM is associated with cyclic work hardening. The change of the FWHM is not significant in $10{\sim}20%$ of ratio of fatigue life. The residual stress is changed with fatigue cycle increasing during the fatigue pro process.

Thermal analysis on composite girder with hybrid GFRP-concrete deck

  • Xin, Haohui;Liu, Yuqing;Du, Ao
    • Steel and Composite Structures
    • /
    • 제19권5호
    • /
    • pp.1221-1236
    • /
    • 2015
  • Since the coefficients of thermal expansion (CTE) between concrete and GFRP, steel and GFRP are quite different, GFRP laminates with different laminas stacking-sequence present different thermal behavior and currently there is no specification on mechanical properties of GFRP laminates, it is necessary to investigate the thermal influence on composite girder with stay-in-place (SIP) bridge deck at different levels and on different scales. This paper experimentally and theoretically investigated the CTE of GFRP at lamina's and laminate's level on micro-mechanics scales. The theoretical CTE values of laminas and laminates agreed well with test results, indicating that designers could obtain thermal properties of GFRP laminates with different lamina stacking-sequence through micro-mechanics methods. On the basis of the CTE tests and theoretical analysis, the thermal behaviors of composite girder with hybrid GFRP-concrete deck were studied numerically and theoretically on macro-mechanics scales. The theoretical results of concrete and steel components of composite girder agreed well with FE results, but the theoretical results of GFRP profiles were slightly larger than FE and tended to be conservative at a safety level.