• Title/Summary/Keyword: profile changes

Search Result 1,016, Processing Time 0.03 seconds

An Empirical Approach to determine Road-Surface Conditions for Anti-Lock Brake System (Anti-Look Brake Systern을 위한 경험적 노면판단 방법)

  • 박병량;양순용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.125-125
    • /
    • 2000
  • An Empirical approach to determine a road-surface condition is presented The road-surface condition thus provided includes the detection of not only friction coefficient, but also abrupt surface-profile changes such as pitfalls and bumpers The former plays a key role in establishing the appropriate control strategy, while the latter allows to minimize unnecessary brake intervention induced by the aforementioned jut. In this paper, we use an empirically chosen variable, namely. the time-rate of change of vehicle speed estimated from the point where ABS engaged to the point where measurement taken Experimental results shoe that the proposed method is effective to infer various control variables critical for the control of ABS.

  • PDF

A Molecular Dynamics Simulation for the Moving Water Droplet on Atomistically Smooth Solid Surface (원자적으로 균일한 평판 위에서 움직이는 물 액적에 대한 분자동역학 시뮬레이션)

  • Hong, Seung-Do;Ha, Man-Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.8
    • /
    • pp.559-564
    • /
    • 2009
  • The variation in the shape of water droplet moving on atomistically smooth solid surface in the presence of a constant body force is simulated using molecular dynamics simulation. We investigated how the advancing and receding contact angle of the moving water droplet changes on a solid surface having various characteristic energies. From the MD simulation results, we obtained the density profile defined as the number of water molecules at a given position. Then, assuming the water droplet periphery to be a circle, we calculated the contact angles by using a nonlinear fitting of the half-density contour line. The present simulation clearly shows the different profile of the advancing and receding contact angle for these three different interaction potential between the water droplet and the solid surface.

Experimental study on improving bamboo concrete bond strength

  • Mali, Pankaj R.;Datta, Debarati
    • Advances in concrete construction
    • /
    • v.7 no.3
    • /
    • pp.191-201
    • /
    • 2019
  • Bamboo concrete bond behaviour is investigated through pullout test in this work. The bamboo strip to be used as reinforcement inside concrete is first treated with chemical adhesive to make the bamboo surface impermeable. Various surface coatings are explored to understand their water repellant properties. The chemical action at the bamboo concrete interface is studied through different chemical coatings, sand blasting, and steel wire wrapping treatment. Whereas mechanical action at the bamboo concrete interface is studied by developing mechanical interlock. The result of pullout tests revealed a unique combination of surface treatment and grooved bamboo profile. This combination of surface treatment and a grooved bamboo profile together enhances the strength of bond. Performance of a newly developed grooved bamboo strip is verified against equivalent plain rectangular bamboo strip. The test results show that the proposed grooved bamboo reinforcement, when treated, shows highest bond strength compared to treated plain, untreated plain and untreated grooved bamboo reinforcement. Also, it is observed that bond strength is majorly influenced by the type of surface treatment, size and spacing of groove. The changes in bamboo-concrete bond behavior are observed during the experimentation.

A finite element based approach to observe hydrodynamic pressure in reservoir adjacent to concrete gravity dam

  • Santosh Kumar, Das;Kalyan Kumar, Mandal;Arup Guha, Niyogi
    • Ocean Systems Engineering
    • /
    • v.12 no.4
    • /
    • pp.385-402
    • /
    • 2022
  • This paper deals with the study of hydrodynamic pressure in reservoir adjacent to the concrete gravity dam subjected to dynamic excitation. Widely famous finite element method is used to discretize the reservoir domain for modelling purpose. Pressure is considered as nodal variable following Eulerian approach. A suitable nonreflecting boundary condition is applied at truncated face of reservoir to make the infinite reservoir to finite one for saving the computational cost. Thorough studies have been done on generation of hydrodynamic pressure in reservoir with variation of different geometrical properties. Velocity profile and hydrodynamic pressure are observed due to harmonic excitation for variation of inclination angle of dam reservoir interface. Effect of bottom slope angle and inclined length of reservoir bottom on hydrodynamic pressure coefficient of reservoir are also observed. There is significant increase in hydrodynamic pressure and distinct changes in velocity profile of reservoir are noticeable for change in inclination angle of dam reservoir interface. Change of bottom slope and inclined length of reservoir bottom are also governing factor for variation of hydrodynamic pressure in reservoir subjected to dynamic excitation.

Chemically-induced delayed cutaneous hypersensitivity in dogs infected with Demodex canis (Demodex canis 감염이 화학적으로 유발된 지연형 피부과민증에 미치는 영향)

  • Lee, Chai-yong;Ham, Hyeon-woo;Lee, Chung-gil;Seo, Kye-won
    • Korean Journal of Veterinary Research
    • /
    • v.35 no.4
    • /
    • pp.843-851
    • /
    • 1995
  • To observe the effect of Demodex canis infection on the cellular immune response and hematological profile, 8 Doberman pinschers experimentally infected with D cains and 4 uninfected control dogs were sensitized with 2, 4-dinitro-chlorobenzene(DNCB) on the skin and were challenged with DNCB 14 days after the initial sensitization to elicit allergic contact dermatitis. Histological and hematological changes of these dogs were then observed. Macroscopic changes of skin challenged with DNCB in D canis-infected dogs included significantly reduced area of allergic reaction(p<0.05) than in uninfected control group. Infiltration of inflammatory cells in the D canis-infected group was also significantly reduced(p<0.05) than in the uninfected control group. These changes indicated that the cell-mediated immune response of the animals was suppressed by the infection with D canis. Total white blood cell count in dogs infected with D canis was increased when dogs were sensitized with DNCB (p<0.01). The result appeared to be caused by stress due to D canis infection, secondary bacterial infection and decreased efficacy of general body defense system. Blood eosionophils were increased in D canis-infected dogs which appreared to be caused by the allergic contact dermatitis. Blood chemistry analysis revealed that total protein and globulin were increased(p<0.05), while albumin level was decreased. This result appeared to be caused by secondary bacterial infection.

  • PDF

An Assessment of Image Analysis of Longitudinal Bone Changes (시간경과에 따른 골변화의 영상 분석에 관한 연구)

  • Kim Young-Jin;Kim Jae-Duk
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.27 no.1
    • /
    • pp.73-86
    • /
    • 1997
  • This study was performed to assess the analyzing methods developed to detect clinically and quantitatively longitudinal bone changes. Through preliminary experiment, accuracy of Cu-Eq value conversion to the mass of HA was examined. For main experiment, 15 intraoral radiograms taken at soon, 1st, 2nd, 4th, and 6th week after implantation of mixture in extracted sites of 3 cases were used. We took the radiograms with copper step wedge as test object and HA phantom X -ray taking was standardized by using Rinn XCP device customized directly to the individual dentition with resin bite block. The images inputted by Quick scanner into computer were digitized and analyzed by NIH image program. The stability of the copper equivalent transformation and the usefulness of two analyzing methods by ROI and Reslice were examined. Obtained results as follows: 1) On the Cu equivalent images, the coefficient of variation in the measurement of Cu-Eq. value of ROI ranged from 0.05 to 0.24 and showed high reproducibility. 2) All results obtained by resliced contiguous image were coincident with those obtained from the assessment by ROI and formation of plot profile. 3) On the stacked and resliced image at the line of interest, we could analyze directly and quantitatively the longitudinal changes at several portions by plot profile and qualitatively by surface plot. 4) Implant area showed marked resorption till 2 weeks after implantation and showed significant increase in Cu-Eq. value at 6th week(p<0.01) and periapical area showed increase in Cu-Eq. value at 6th week compared to after-operation's.

  • PDF

Effects of Cutting Area on Straightness Characteristics in Side Walls Caused by Form Generation Mechanism in End-Milling Process (엔드밀링 공정의 형상창성기구에 의하여 절삭면적이 측벽 진직도 특성에 미치는 영향)

  • Kim, Kang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.10
    • /
    • pp.1269-1278
    • /
    • 2013
  • The cutting area changes periodically in the end-milling process because of its form generation mechanism. In this study, the effects of the cutting area on end-milled side walls are studied by developing a cutting area model that simulates the area formed by engagement between a workpiece and a cutting edge of the end mill. To do this, the straightness profile of the side wall in the axial direction is investigated. Models for estimating the cutting area and the transition point, where the slope of the straightness profile changes suddenly, are verified from real end-milling experiments under various radial and axial depth of cut conditions. Through this study, it is confirmed that the final end-milled side wall is generated in the regions where cutting areas are constant and decreasing in the down-cut. Similarly, in stable up-cut, it is also generated in the regions where cutting areas are increasing and constant. It is found that the transition point appears when the region changes.

The effect of some detergents on the changes of bacterial membrane (계면 활성제 처리에 의한 세균 세포막의 변화에 관한 연구)

  • 이종삼;이호용;조기승;조선희;장성열;최영길
    • Korean Journal of Microbiology
    • /
    • v.21 no.3
    • /
    • pp.115-126
    • /
    • 1983
  • The results that the effect of 6 detergents on the structural changes and biochemical composition of bacterial membrane of Escherichia coli and Bacillus cereus are as follows ; 1. Population growth of the bacteria was increased in case of the treatment with palmitoyl carnitine and sodium deoxy cholate but was increased in case of the treatment with palmitoyl carnitine and sodium deoxy cholate but was decreased by sodium dodecyl sulfate and palmitoyl choline, in E.coli and was decreased by palmitoyl carnitine and palmitoyl choline at the low concentration, in B. cereus. 2. The electron micrograph showed that cell wall lysis or cell collapse were observed in the treatment of sodium dodecyl sulfate and palmitoyl choline, and also cell wall was condensed by triton X-100 and sodium deoxy cholate, in E.coli. And in B. cereus, endospore formation of the bacteria was stimulated by palmitoyl choline, and cell lysis or structural changes of the membrane were observed in the treatment of sodium dodecyl sulfate, sodium cholate, and triton X-100, respectively. 3. As to the effect of detergent on the biochemical composition of biomembrane, the content of carnitine, in E.coli, and B.cereus, the content of structural protein and phospholipid were decreased by treatment of sodium dodecyl sulfate and structural protein was denatured by palmitoyl choline. 4. The profile of membrane protein revealed that the bacterial membrane were composed of various proteins. By dint of this result, some of membrane proteins were solubilized or changed to small molecules by the treatment of sodium dodecyl sulfate and palmitoyl choline, in E.coli and membrane protein of the biomembrane by treatment of sodium dodecyl sulfate, sodium deoxy cholate, palmitoyl choline, and palmitoyl carnitine were confirmed to be different profile as compared with those of the control, in B. cereus. Therefore, it is suggested that sodium dfodecyl sulfate and palmitoyl choline soulbilized biomembranes or inhibited membrane transport and that palmitoyl carnitine and sodium deoxy cholate were used as an energy source or stimulating the membrane transport, in E.coli. And, it is suggested that all of detergents were inhibited biomembrane synthesis, expet saponin, in B.cereus.

  • PDF

Changes in the metabolic profile and nutritional composition of rice in response to NaCl stress

  • Nam, Kyong-Hee;Kim, Do Young;Shin, Hee Jae;Pack, In-Soon;Kim, Chang-Gi
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.2
    • /
    • pp.154-168
    • /
    • 2018
  • Salinity is a major abiotic stress that adversely affects crop productivity and quality. In this study, the metabolic profile and nutritional composition of rice in response to NaCl were analyzed. The plants were exposed to stressed or unstressed conditions, and their metabolic changes were examined in the shoots, roots, and grains collected at different growth stages. The levels of nutrients and anti-nutrients, including proximates, amino acids, fatty acids, minerals, vitamins, and phytic acid, were also determined for the grains. Application of NaCl significantly decreased the shoot and root growth and induced metabolic alterations at the tillering stage. During the heading stage, only the root metabolites were influenced by NaCl, and no metabolic variations related to salinity were found in the shoot, roots, and grains at the ripening stage. Nutritional analysis of the grain samples revealed that the amounts of linolenic acid and tricosanoic acid were significantly reduced while those of copper, sodium, and phytic acid were enhanced in response to stress. However, except for sodium, those differences were not great. Our results suggest that although NaCl-salinity influences the phenotypic and metabolic profiles of rice shoots and roots at the tillering stage, this impact becomes negligible as tissue development proceeds. This is especially true for the grains. Compositional analysis of the grains indicated that salinity induces some changes in fatty acids, minerals, and anti-nutrients.

Changes in Chemical Properties and Microbial Population of Farm-Made Organic Liquid Fertilizer during Fermenting Process (농가 자가제조 액비의 발효과정 중 이화학성 및 미생물상 변화)

  • An, Nan-Hee;Kim, Yong-Ki;Lee, Yeon;Jee, Hyeong-Jin;Park, Jong-Ho;Hong, Sung-Jun;Han, Eun-Jung
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.3
    • /
    • pp.417-425
    • /
    • 2011
  • This study was conducted to investigate the changes in physicochemical and microbiological properties during fermenting process of farm-made organic liquid fertilizer made of the mixture of organic materials such as blood meal and molasse during fermenting process. The pH level of organic liquid fertilizer during the ermentation decreased from 7.2 to 4.3. The EC of organic liquid fertilizer was increased from 13.9 dS/m to 99.3 dS/m during the fermentation. The total population of aerobic bacteria decreased from $8.2{\times}10^5$ cfu/ml to $3{\times}10^4$ cfu/ml, but Bacillus spp. increased from $2.1{\times}10^2$ cfu/ml to $4.2{\times}10^3$ cfu/ml during the fermentation. Bacterial isolates were obtained from organic liquid fertilizers and identified by fatty acid-base typing. The Genus Bacillus was dominant as fermenting proceeded. The denaturing gradient gel electrophoresis (DGGE) profile showed changes of bacterial communities in organic liquid fertilizers.