• Title/Summary/Keyword: productivity

Search Result 10,813, Processing Time 0.036 seconds

Influence of Cultivated Regions in Organic and Conventional Farming Paddy Field (벼 유기농업과 관행농업에 미치는 재배지역의 영향)

  • Lee, Seong-Tae;Seo, Dong-Cheol;Cho, Ju-Sik;Kim, Eun-Seok;Song, Won-Doo;Lee, Young-Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.408-414
    • /
    • 2011
  • The purpose of this study was to find out optimum cultivated regions for rice organic farming. The organic and conventional rice as control were grown in three different places : secluded hill paddy field for Hapcheon, normal rural paddy field for Sancheong, and suburban paddy field for Jinju from 2005 to 2006. In secluded hill paddy field, the organic material and pesticide to control pest and disease were input twice for organic and conventional rice cultivation. However, in normal rural and suburban paddy field, those were input three times for organic and conventional rice cultivation. The occurrence of sheath blight in organic farming was higher than in conventional farming. Whereas brown planthopper population per 20 plant was significantly high 10.1~19.5 for conventional farming compared with 4.4~10.0 for organic farming. For that reason, the density of the brown planthoppers was higher in organic farming than those in conventional farming. Dominated weeds occurred in organic and conventional paddy field were namely Monochoria vaginalis, Ludwigia prostrata, and Cyperus difformis. The population per 20 plant and dried weight per $m^2$ of weeds were higher in 121 and 50.5 g for organic paddy field. The productivity of rice in different cultivated regions for organic farming was $2.96Mg\;ha^{-1}$ in hill paddy field, $4.03Mg\;ha^{-1}$ in normal rural and suburban paddy field. Toyo-taste value and ratio of perfect grain of milled rice were not different by cultivated regions in both farming system.

Assessment of Silicate Fetilizers Application Affecting Soil Properties in Paddy Field (논토양에서 규산질비료 시용이 토양 환경에 미치는 영향)

  • Joo, Jin-Ho;Lee, Seung-Been
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1016-1022
    • /
    • 2011
  • Application of silicate fertilizers is typically practiced with several year's interval to amend soil quality and improve rice productivity at the paddy field in Korea. Most of silicate fertilizers applied in Korea is slag-originated silicate fertilizer. Some water soluble silicate fertilizers are manufactured and commercially available. The objective of this study was to assess changes of soil chemical properties in paddy field by applying slag-originated silicate fertilizer and water soluble silicate fertilizer. Field experiment was conducted on a silt loam paddy soil, where four levels of each silicate fertilizer were applied in soil at the rate of 0, 1, 2, 4 times of the recommended levels. Application of slag-originated silicate fertilizer increased soil pH, while no significant pH increase occurred with the treatment of water soluble silicate fertilizers. Soil pH increased 0.4~0.5 with the 1 time of recommended level of slag-originated silicate fertilizer. Available $SiO_2$ contents also significantly increased with the treatment of slag-originated silicate fertilizer at 15 and 35 days after treatment, while decreased after 60 days after treatment possibly due to rice uptake. Exchangeable Ca, Mg and available phosphate contents in soil increased with application of slag-originated silicate fertilizer, while a little increases for them were shown with the application of soluble silicate fertilizer. $SiO_2$/N ratios in rice straw for 1 time of recommended level of slag-originated silicate fertilizer was 11.5, while that of control was 8.4, which was much lower value. Throughout this study, soil application of slag-originated silicate fertilizer enhanced soil chemical properties, while water soluble silicate fertilizer application in soil needs further study resulting in a little effects on soil property.

Impact of Compost Application on Improvement of Rice Productivity and Quality in Reclaimed Soil (간척지 토양에서 퇴비처리가 벼의 생산 및 품질개선에 미치는 영향)

  • Moon, Young-Hun;Kwon, Young-Rip;Ahn, Byung-Koo;Kim, Dae-Hyang;Han, Seong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.808-813
    • /
    • 2011
  • This study was conducted to reduce the dependability of farmers on chemical fertilizers for rice cultivation. Soil chemical and biological properties were monitored before experiment and at the time of harvesting. The results showed that EC, available $SiO_2$, and exchangeable $Ca^{2+}$ were decreased at the time of harvesting while pH, OM, and exchangeable $K^+$ and $Mg^{2+}$ were remain unchanged, compared with soil before experiment. Population of aerobic bacteria, Bacillus sp., and fungi were also increased at the time of harvesting in the paddy field, compared with before fertilization, in the treatment of 50% soil-testing fertilizer+ 50% compost. Concentrations of N, P, and K in rice leaves increased with the fertilizers application, maximum increase was recorded in 50% soil-testing fertilizer+ 50% compost. Non-significant difference was observed in the morphological parameters of rice among the treatments. The chlorophyll contents of rice leaf increased in a similar fashion up to 60 days, thereafter, sharp decrease was observed in all the treatments. Maximum yield (per 10a) was recorded in the field treated with 50% soil-testing fertilizer+ 50% compost followed by standard applied fertilizer, 70% soil-testing fertilizer+ 30% compost, soil-testing fertilizer and unfertilized plot. Amylose content showed non-significant difference within the treatments. Protein content increased with the use of fertilizers and best protein content was recorded in the treatment of 50% soil-testing fertilizer+ 50% compost. It was concluded that the amount of the chemical fertilizer used was directly proportional to the protein content of rice grain. However, the palatability of rice grown in unfertilized field was better than the treatments but minimum yield was obtained. Hence, the treatment of 50% soil-testing fertilizer+ 50% compost, was the best among the fertilizer combinations for rice cultivation as supported by the yield, protein and palatability index.

Establishment on Fertilizer Recommendation and Soil Characteristics of Rice Paddy with Environment-friendly Cultivation (농가실천 친환경 벼재배 논의 토양특성 및 시비추천량)

  • Yang, Chang-Hyu;An, Seung-Hyun;Kim, Taek-Kyum;Kim, Sun;Baek, Nam-Hyun;Choi, Weon-Young;Lee, Jang-Hee;Jeong, Jae-Hyeok;Kim, Si-Ju
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.347-352
    • /
    • 2011
  • Environment-friendly agriculture (EFA) are aimed to reduce use of chemical inputs as possible the recycling of resources and the environment while preserving the local resources in the long term to ensure a constant productivity and profitability for producing safe food. This study was conducted to investigate characteristics on soil environment at paddy field of environment-friendly agriculture regions (EFARs) in Honam area. Survey point of EFARs Chungnam, Jeonbuk and Jeonnam, rice bran farming method in two districts, rice bran + snail farming method in eight districts, snail farming method in five districts and ducks farming method in three districts a total of 18 districts were selected. Annual of farming method, friendly-environment certification, amount of applied fertilizer, and history of cultivation to the farm household were surveyed. The content of available phosphate and silicate among the soil chemical properties in EFA paddy field were a little lower than optimum level, and those of agricultural methods fertilized with rice bran were a little lower than those of others. Hardness among the soil physical properties in EFA paddy field were a little lower than conventional practices, and that of agricultural methods fertilized with rice bran were a little lower than those of others. We showed fertilizer recommendation dose about soil nutritional shortages according to fertilization prescriptions index by crops.

Evaluation of Rapeseed Seedling Quality According to Varieties and Seedling Ages for Spring Cultivation Transplanting (유채 봄 재배 기계이식을 위한 품종별 육묘 일수에 따른 묘소질 평가)

  • An, Da-Hee;Cha, Young-Lok;Kim, Kwang-Soo;Shin, Woon-Chul;Lee, Ji-Eun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.3
    • /
    • pp.256-264
    • /
    • 2021
  • Rapeseed (Brassica napus L.) is generally sown in late autumn and harvested in early summer in Korea, however, spring cultivation has also been attempted in some areas because frequent climate changes induce reducing productivity. Therefore, there is a need for a transplanting technology that is relatively easy to control of cropping season according to changes in cultivation conditions. In this study, to find out the optimal characteristics of seedlings for machine transplanting of spring cultivation, seedling morphological characteristics were investigated according to the seedling age of three varieties for 2020 and 2021. The hypocotyl length was less than 2 cm in both years and the 40-day-old seedling was the shortest among all seedling ages. The number and size of leaf were increased with longer seedling age in both years. To evaluate seedling quality, total seedling length, seedling weight, and impact resistance were measured before transplanting. Total seedling length was the longest in 40-day-old seedlings and the shortest in 25-day-old seedlings in both years. In the case of seedling weight, no significant differences were observed depending on the seedling age and the impact resistance increased with increasing seedling age. Finally, 'Jungmo7001', 'Naehan', and 'Tamla' showed a high transplanting rate in seedlings grown for more than 30 days, 35 days, and 40 days, respectively, in the field using a general transplanter. These results suggest that the proper seedling age for transplanting is limited depending on the rapeseed varieties. The suitable seedling cultivation method can be selected for different cultivation environments.

Comparative Analysis of Gut Microbiota among Broiler Chickens, Pigs, and Cattle through Next-generation Sequencing (차세대염기서열 분석을 이용한 소, 돼지, 닭의 장내 미생물 군집 분석 및 비교)

  • Jeong, Ho Jin;Ha, Gwangsu;Shin, Su-Jin;Jeong, Su-Ji;Ryu, Myeong Seon;Yang, Hee-Jong;Jeong, Do-Youn
    • Journal of Life Science
    • /
    • v.31 no.12
    • /
    • pp.1079-1087
    • /
    • 2021
  • To analyze gut microbiota of livestock in Korea and compare taxonomic differences, we conducted 16S rRNA metagenomic analysis through next-generation sequencing. Fecal samples from broiler chickens, pigs, and cattle were collected from domestic feedlots randomly. α-diversity results showed that significant differences in estimated species richness estimates (Chao1 and ACE, Abundance-based coverage estimators) and species richness index (OUTs, Operational taxonomic units) were identified among the three groups. However, NPShannon, Shannon, and Simpson indices revealed that abundance and evenness of the species were statistically significant only for poultry (broiler chickens) and mammals (pigs and cattle). Firmicutes was the most predominant phylum in the three groups of fecal samples. Linear discriminant (LDA) effect size (LEfSe) analysis was conducted to reveal the ranking order of abundant taxa in each of the fecal samples. A size-effect over 2.0 on the logarithmic LDA score was used as a discriminative functional biomarker. As shown by the fecal analysis at the genus level, broiler chickens were characterized by the presence of Weissella and Lactobacillus, as well as pigs were characterized by the presence of provetella and cattele were characterized by the presence of Acinetobacter. A permutational multivariate analysis of variance (PERMANOVA) showed that differences of microbial clusters among three groups were significant at the confidence level. (p=0.001). This study provides basic data that could be useful in future research on microorganisms associated with performance growth, as well as in studies on the livestock gut microbiome to increase productivity in the domestic livestock industry.

The Evaluation of Carbon Storage and Economic Value Assessment of Wetlands in the City of Seoul (서울시 습지지역의 탄소저장 및 경제적 가치 평가에 대한 연구)

  • Choi, Jiyoung;Oh Jongmin;Lee, Sangdon
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.2
    • /
    • pp.120-132
    • /
    • 2021
  • The ecosystem and landscape conservation areas of Seoul were designated according to the Natural Environment Conservation Act and the Natural Environment Conservation Ordinance. With the adoption of the "Rapid Assessment of Wetland Ecosystem Service (RAWES)" approach and the "wetland ecosystem service" for the Ramsar Wetland City Accreditation at the 13th Meeting of the Conference of the Contracting Parties to the Ramsar Convention on Wetlands in 2018, the need for data evaluating wetland ecosystem services has become a necessity. Therefore, in this study, we selected five wetlands from the ecosystem and landscape conservation areas in Seoul, having high ecological conservation values, and evaluated their carbon sequestration and economic value assessment using the InVEST model, which is an ecosystem service evaluation technique. The evaluation results for carbon storage in each wetland are as follows: Tancheon Wetland: 3,674.62 Mg; Bamseom Island in the Hangang River: 1,511.57 Mg; Godeok-dong Wetland: 5,007.21 Mg; Amsa-dong Wetland: 7,108.47 Mg; and Yeouido Wetland: 290.27 Mg. Particularly, the Tancheon Wetland showed the lowest carbon sequestration of 1,130.37 Mg, as compared to the results acquired in 2013, of 4,804.99 Mg. When the average effective carbon rate of $16.06 (US) was applied to the decreased carbon sequestration value, a loss of $15,910.58(US) was calculated. Furthermore, if the average social cost of carbon ($204 (US)) is considered, which includes the impact of climate change on productivity and ecosystems, the total loss is equivalent to $202,101.97 (US). This study aims to examine the natural resource value of urban wetlands by evaluating selected major wetlands in Seoul. This study can be utilized as basic data to plan for the protection and management of the ecosystem and landscape conservation areas. Additionally, because wetland value assessment is considered essential, the results of this study can be used in future research to provide measures for evaluating ecosystem services in the Ramsar Wetland City Certification System. Moreover, this study can be utilized for selecting important wetlands as Ramsar sites, and to raise awareness about the significance of conserving urban wetlands, and for expanding international exchange among the Ramsar Wetland sites.

Effect of micro-environment in ridge and southern slope on soil respiration in Quercus mongolica forest

  • Lee, Jae-Seok
    • Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.210-218
    • /
    • 2018
  • Background: Soil respiration (Rs) is a major factor of the absorption and accumulation of carbon through photosynthesis in the ecosystem carbon cycle. This directly affects the amount of net ecosystem productivity, which affects the stability and sustainability of the ecosystem. Understanding the characteristics of Rs is indispensable to scientifically understand the carbon cycle of ecosystems. It is very important to study Rs characteristics through analysis of environmental factors closely related to Rs. Rs is affected by various environmental factors, such as temperature, precipitation, soil moisture, litter supply, organic matter content, dominant plant species, and soil disturbance. This study was conducted to analyze the effects of micro-topographical differences on Rs in forest vegetation by measuring the Rs on the ridge and southern slope sites of the broadly established Quercus mongolica forest in the central Korean area. Method: Rs, Ts, and soil moisture data were collected at the southern slope and ridge of the Q. mongolica forest in the Mt. Jeombong area in order to investigate the effects of topographical differences on Rs. Rs was collected by the closed chamber method, and data collection was performed from May 2011 to October 2013, except Winter seasons from November to April or May. For collecting the raw data of Rs in the field, acrylic collars were placed at the ridge and southern slope of the forest. The accumulated surface litter and the soil organic matter content (SOMC) were measured to a 5 cm depth. Based on these data, the Rs characteristics of the slope and ridge were analyzed. Results: Rs showed a distinct seasonal variation pattern in both the ridge and southern slope sites. In addition, Rs showed a distinct seasonal variation with high and low Ts changes. The average Rs measurements for the two sites, except for the Winter periods that were not measured, were $550.1\;mg\;CO_2m^{-2}h^{-1}$ at the ridge site and $289.4\;mg\;CO_2m^{-2}h^{-1}$ at the southern slope, a difference of 52.6%. There was no significant difference in the Rs difference between slopes except for the first half of 2013, and both sites showed a tendency to increase exponentially as Ts increased. In addition, although the correlation is low, the difference in Rs between sites tended to increase as Ts increased. SMC showed a large fluctuation at the southern slope site relative to the ridge site, as while it was very low in 2013, it was high in 2011 and 2012. The accumulated litter of the soil surface and the SOMC at the depth range of 0~5 cm were $874g\;m^{-2}$ and 23.3% at the ridge site, and $396g\;m^{-2}$ and 19.9% at the southern slope site. Conclusions: In this study, Rs was measured for the ridge and southern slope sites, which have two different results where the surface litter layer is disturbed by strong winds. The southern slope site shows that the litter layer formed in autumn due to strong winds almost disappeared, and while in the ridge site, it became thick due to the transfer of litter from the southern slope site. The mean Rs was about two times higher in the ridge site compared to that in the southern slope site. The Rs difference seems to be due to the difference in the amount of litter accumulated on the soil surface. As a result, the litter layer supplied to the soil surface is disturbed due to the micro-topographical difference, as the slope and the change of the community structure due to the plant season cause heterogeneity of the litter layer development, which in turn affects SMC and Rs. Therefore, it is necessary to introduce and understand these micro-topographical features and mechanisms when quantifying and analyzing the Rs of an ecosystem.

Effects of Specific Gravity on Germination and Emergence of Foxtail Millet (Setaria italica Beauvois) (염수선 종자 정선법에 따른 조의 발아 및 출현율)

  • Jung, Ki-Youl;Choi, Young-Dae;Chun, Hyen-Chung;Lee, Sang-Hun;Jeon, Seung-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.2
    • /
    • pp.144-151
    • /
    • 2019
  • The establishment rate of foxtail millet seeds is greatly affected by soil environment conditions. To enhance germination viability and stable production of foxtail millet seeds, it is important to select seeds with a high density. Therefore, this study tested the selection of high-quality seeds using salt solution (specific gravity: 1.000, 1.005, 1.010, 1.015, 1.020, 1.025, 1.030, 1.035, and $1.040g\;L^{-1}$) and investigated their germination rates, percentages of emergence, and seeding quality. In this study, three varieties were tested: 'Hwanggeum', 'Samdachal', and 'Kyeongkwan1'. The thousand seed weight of all three varieties increased proportionally with specific gravity. The highest thousand seed weight was observed at the selection with $1.040g\;L^{-1}$ specific gravity, which also had the highest germination rate of 88.3%, 86.7%, and 90.6%, for 'Hwanggeum'; 'Samdachal'; and 'Kyeongkwan1', respectively. The results of seeding quality indicated that higher the specific gravity during selection, the higher were the values of plant growth (plant height, leaf length, stem diameter, root length, root weight, and stem weight). All the three varieties were found to be longer or heavier for seeds selected at the specific gravity of $1.040g\;L^{-1}$. The packing germination viability investigation found that higher the specific gravity for selection of seeds, the higher was the percentage of emergence (PE) and the emergence rate index (ERI). The PE was the highest for seeds selected at $1.040g\;L^{-1}$ specific gravity (85.3, 83.0, and 87.0%), and ERI was also as high as $2.82d^{-1}\;m^{-1}$ or more at $1.040g\;L^{-1}$. Selection of seeds with salt solution resulted in high germination viability of foxtail millet. Therefore, sowing seeds selected at $1.040g\;L^{-1}$ specific gravity is expected to help substantially in increased productivity.

Effect of environmental temperature on respiration rate, rectal temperature and body-surface temperatures in finishing pigs (환경온도가 비육돈의 호흡수, 직장 온도 및 체표면 온도에 미치는 영향)

  • Cheon, Si-Nae;Park, Kyu-Hyun;Choi, Hee-Chul;Kim, Jong-bok;Kwon, Kyeong-Seok;Lee, Jun-Yeob;Woo, Saem-Ee;Yang, Ga-Yeong;Jeon, Jung-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.103-110
    • /
    • 2019
  • Recently, Korea has been affected by extreme weather events including extended summers and increased temperatures caused by global warming and climate change. Environmental temperature is especially important to the livestock industry because it is closely related to livestock productivity. This study was conducted to investigate the influence of different environmental temperatures on respiration rate, rectal temperature and body-surface temperature in finishing pigs. Pigs ($98.3{\pm}6.6kg$) were housed in individual cages inside an experimental chamber and exposed continuously to one of five environmental treatments ($22^{\circ}C$, $24^{\circ}C$, $26^{\circ}C$, $28^{\circ}C$, $30^{\circ}C$) for 10 days without providing additional rest time. Feed and water intake, respiration rate, rectal temperature and body-surface (head, ear, neck, back, side) temperature were measured two times daily during the experimental period. A significant increase in respiration rate from $26^{\circ}C$ and in body-surface temperature from $24^{\circ}C$ (p<0.05) was observed. At $30^{\circ}C$, the respiration rate had almost doubled and the body-surface temperature increased by about $5^{\circ}C-7^{\circ}C$. Moreover, ear skin temperature was very sensitive to environmental temperature. However, feed intake, water intake and rectal temperature did not change significantly during the experiment.