• Title/Summary/Keyword: production mechanism

Search Result 2,131, Processing Time 0.035 seconds

NOx Formation Characteristics in Diffusion, Partial Premixed and Premixed Jet flame (가스 연료의 연소 방식에 따른 NOx 생성 특성)

  • Choi, Young-Ho;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.155-164
    • /
    • 1998
  • Numerical analysis was performed with multicomponent transport properties and detailed reaction mechanisms for axisymetric 2-D CH4 jet diffusion, partial premixed, premixed flame. Calculations were carried out twice with C2-Full Mechanism including prompt NO reaction in addition to the above C2-Thermal NO Mechanism. The role of thermal NO mechanism and prompt NO mechanism on each flame's NO production is investigated by using the numerical result. The NOx production of each flame were evaluated Quantitatively in terms of the NOx emission index

  • PDF

The Development of a Short Reaction Mechanism for Premixed CH4/CHF3/Air Flames (CH4/CHF3/Air 예혼합 화염의 축소 반응 메카니즘 개발)

  • Lee, Ki Yong
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.1
    • /
    • pp.39-44
    • /
    • 2014
  • A short reaction mechanism for premixed $CH_4/CHF_3/Air$ flames was developed with a reduction method of the combined application of simulation error minimization (SEM) which included connectivity method and principal component analysis. It consisted of 43 species and 403 elementary reactions at the condition of less than 5% of maximum error. The calculation time operated with a short mechanism was over 5 times faster than one with a detailed reaction mechanism. Good agreement was found between the flame speeds calculated by the short reaction mechanism and those by the detailed reaction mechanism for the entire range of $CHF_3/CH_4$ mole ratios and equivalence ratios. In addition excellent agreements were determined for the profiles of temperature, species concentration, and the production rates of the various species. So the short reaction mechanism was able to accurately predict the flame structure for premixed $CH_4/CHF_3/Air$ flames.

Design of a VCM actuator for dual servo system

  • Choi, Hyeun-Seok;Han, Chang-Soo;Kim, Seung-Soo;Kim, Eung-Zu;Choi, Tae-Hoon;Na, Kyoung-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.301-306
    • /
    • 2004
  • In this study, Dual servo mechanism with VCM(Voice Coil Motor) and PZT is designed for a high precision force and position control. We designed the VCM actuator and dual servo mechanism with leaf spring. VCM actuators, with their high linearity, simple structure, low weight, and high efficiency, are increasingly being used in micro-positioning applications. There are many kinds of VCM with a structure. VCM actuators are divided into two types by moving parts. One is moving magnet type and the other moving coil type. We described the properties of these two types of VCM. Design parameters of VCM are defined through the FEM simulation analysis of magnetic field and dynamic model of dual servo mechanism. These researches help to for decreasing loss in the air gap of VCM. We present dual servo mechanism is effective mechanism for a force control in hi h precision, properties of designed VCM.

  • PDF

Numerical Simulations of the Pyrolysis of 1,2 Dichloroethane (1,2 Dichloroethane의 열분해에 대한 수치해석)

  • Lee, Ki-Yong
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.697-702
    • /
    • 2001
  • Numerical simulations of 1,2 dichloroethane(EDC) pyrolysis are conducted to understand the process on the production of the vinyl chloride monomer(VCM) and by-products. A chemical kinetic mechanism is developed, the adopted scheme involving 44 gas-phase species and 260 elementary forward and backward reactions. Detailed sensitivity analyses and the rates of production analysis are performed on each of the reactions and the various species, respectively. The concentrations of EDC, VCM, and HCI predicted by this mechanism are in good agreement with those deduced from experiments of commercial and laboratory scale. The mechanism is found to accurately predict the VCM yield and the production of by-products by varying the ranges of pyrolysis temperature, residence time, and pressure which impact on the pyrolysis of 1,2 dichloroethane. The influence of reactions related to H atom on the relative sensitivity of EDC becomes important as the residence time increases. The pyrolysis of EDC mainly occurs through $C_{2}H_{4}Cl_{2}+Cl=CH_{2}ClCHCl$.

  • PDF

Reaction Mechanixm of Cyclodextrin formation from Swollen Extrusion Starch by cyclocextrin Glucanotransferase (팽윤 전분을 기질로 한 Cyclodextrin Glucanotransferase의 Cyclodextrin 생성반응 기작)

  • 이용현;조명진;박동찬
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.4
    • /
    • pp.416-424
    • /
    • 1995
  • Mechanism of the cyclodextrin (CD) production reaction by cyclodextrin glucanotransferase (CGTase) using swollen extrusion starch as substrate was investigated emphasizing the structural features of starch granule. The degree of gelatinization was identified to be the most representative structural characteristic of swollen starch. The most suitable degree of gelatinization of swollen starch for CD production was around 63.52%. The structural transformation of starch granule during enzyme reaction was also followed by measuring the changes of the degree of gelatinization, microcrystallinity, and accessible and inaccessible portion to CGTase action of residual swollen starch. The adsorption phenomenon of CGTase to swollen starch was also examined under various conditions. The inhibition mechanism of CGTase by various CDs was identified to be competitive, most severely by a-CD. The mechanism elucidated will be used for development of a kinetic model describes CD production reaction in heterogeneous enzyme reaction system utilizing swollen extrusion starch.

  • PDF

Numerical Simulations of the Pyrolysis of 1, 2 Dichloroethane

  • Lee, Ki-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.102-108
    • /
    • 2002
  • Numerical simulations of 1, 2 dichloroethane(EDC) pyrolyisis are conducted to understand the process in the production of the vinyl chloride monomer (VCM) and by-products. A chemical kinetic mechanism Is developed, with the adopted scheme involving 44 gas-phase species and 260 elementary forward and backward reactions. Detailed sensitivity analyses and the rates of production analysis are performed on each of the reactions and the various species, respectively. The concentrations of EDC, VCM, and HCI predicted by this mechanism are in good agreement with those deduced from experiments of commercial and laboratory scale. The mechanism is found to accurately predict the EDC yield an(1 the production of by-products by varying the ranges of pyrolysis temperature, residence time, and pressure which impact on the pyrolysis of 1, 2 dichloroethane. The influence of reactions related to H atom on the relative sensitivity of EDC becomes important as the residence time increases. The pyrolysis of EDC mainly occurs through C$_2$H$_4$Cl$_2$+Cl=CH$_2$CICHI+HCI.

Simulation-based Jansen mechanism utilizing walking robot of the design and implementation in order to implement the best walking movement. (최적 보행 동작 구현을 위한 시뮬레이션 기반 Jansen Mechanism 활용 보행 로봇 설계 및 구현.)

  • Kim, Heechan;Kim, SeungHa
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.467-468
    • /
    • 2016
  • The importance of the recent manufacturing industry have been made to invest in a lot of assistance and human resource development at the national dimension in which to rise again. However Learned in actual school education kinetic, and the use to how product design structural knowledge, Often it feels vague unlikely whether it is possible to derive an optimal product. In this study, by using the simulation-based Jansen Mechanism designed a walking robot, after optimization of the numerical consideration when designing for optimum walking motion, through simulation through the actual production resulting numerical information is examined whether valid. In addition, through the actual production was walking robot, to verify the validity of the simulation-based design.

  • PDF

Performance Evaluation of a Multi - Item Production System Operated by the CONWIP Control Mechanism (CONWIP 통제방식에 의해 운영되는 다품목 생산시스템의 성능평가)

  • Park, Chan-Woo;Lee, Hyo-Seong;Kim, Chang-Gon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.28 no.1
    • /
    • pp.1-13
    • /
    • 2002
  • We study a multi-component production/inventory system in which individual components are made to meet various demand types. We assume that the demands arrive according to a Poisson process, but there is a fixed probability that a demand requests a particular kit of different components. Each component is produced by a flow line with several stations. The production of each component is operated by the CONWIP control mechanism. To analyse this system, we propose an approximation method based on aggregation method. In application of the aggregation method, a product-form approximation technique as well as a matrix-geometric method is used. Comparisons with simulation show that the approximation method provides fairly good results.

Production Mechanism of Residual Stress Generated by Multi-Pass Welding of the steel Pipe (강관 적층용접부 잔류응력의 생성기구)

  • Chang, Kyong Ho;Yang, Sung Chul;Kang, Jae Hoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.4
    • /
    • pp.327-335
    • /
    • 2001
  • The characteristics and production mechanism of residual stress generated by multi-pass welding of the steel pipe were elucidated from the results of three-dimensional thermal elastic-plastic FEM analysis. When the steel pipe was jointed by multi-pass welding, the stress components of circumferential direction and radial direction near welded joints on the inner surface and the outer surface of the pope were tensile. The stress component of axial direction on the inner surface was tensile and on the outer surface was compressive. On the other hands, the production mechanism of residual stress generated by multi-pass welding of the steel pipe was investigated. Residual stress generated by welding of the steel pipe was investigated not only by the thermal history but also by geometrical shape. Then, the generality of the production mechanism of residual stress generated by multi-pass welding was confirmed.

  • PDF

Sensitivity of Ozone Concentrations to Initial Concentrations Applying the Carbon Bond Mechanism IV

  • Lee, Hwa-Woon;Kim, Heon-Sook;Oh, Eun-Joo;Kim, Yeon-Hee
    • Journal of Environmental Science International
    • /
    • v.12 no.11
    • /
    • pp.1159-1165
    • /
    • 2003
  • The Carbon Bond Mechanism IV has been developed for use in urban- and regional-scale oxidant models. The photochemical mechanism, CBM4, contains extensive improvements to earlier carbon bond mechanisms in the chemical representations of aromatics, biogenic hydrocarbons, peroxyacetyl nitartes, and formaldehyde. Ozone is produced mainly by nitrogen oxides and hydrocarbon. By altering the initial concentrations of the mechanism, an analysis of the sensitivity of ozone concentrations to VOC/NO$\_$x/ ratios and VOC composition is conducted in this one-dimensional mechanism. Note that it is considered a chemical mechanism in order to understand the photochemical reactions within this mechanism. It analyzed the results of these simulations by applying a NO$\_$x/-sensitive and a VOC-sensitive regime. These sensitivity regimes are changed to match the relative contribution of VOC and NO$\_$x/ concentrations to ozone production in simulations of two sets.