• Title/Summary/Keyword: production costs

Search Result 1,356, Processing Time 0.029 seconds

Current status and prospects of chitosan for industrial applications (키토산 관련 산업의 현황과 전망)

  • Jung, Byung Ok
    • Food Science and Industry
    • /
    • v.53 no.1
    • /
    • pp.69-83
    • /
    • 2020
  • For the development of the chitosan industry in Korea, the catch of red snow crabs caught on the east coast is rapidly decreasing. Therefore, it is urgent to develop raw materials that can replace the red snow crab as the top priority to solve the supply and demand problems, as well as wastewater treatment costs account for a large proportion of the cost of chitosan. In order to solve the problems, continuous research on biological extraction methods such as enzymatic extraction and microbial fermentation will increase production efficiency and lower unit cost as well as chemical extraction methods. Further efficient manufacturing method can be established. Establishing of novel techniques is indispensable for production of high-purity chitosan and the ability to regulate and separate the molecular weight, as well as joint research with industry, academia and research institute for the research and development of high-functional chitosan derivatives.

A Study on the Design of Hanwoo Farming Model (한우 창업모델 설계에 관한 연구)

  • Shin, Yong Kwang
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.24 no.2
    • /
    • pp.12-22
    • /
    • 2022
  • The purpose of this study is to design a farming model for Hanwoo start-up farmers. I prepared a Hanwoo production plan model according to the growth cycle of Hanwoo using EXCEL. The Hanwoo production plan model was simulated in two model: Model 1 (a model that only purchases Hanwoo calf) and Model 2 (a model that purchases both Hanwoo cow and Hanwoo calf). Next, I reviewed the profits and costs of two Hanwoo simulation models. As a result of the analysis, Model 2 has the following characteristics compared to Model 1. First, Model 2 requires a lot of initial investment. Second, Model 2 is advantageous in terms of farm cash balance because imports occur every year. Third, Model 2 can efficiently use facilities and machines.

Location Efficiencies of Host Countries for Strategic Offshoring Decisions Amid Wealth Creation Opportunities and Supply Chain Risks

  • Ma, Jin-Hee;Ahn, Young-Hyo
    • Journal of Korea Trade
    • /
    • v.25 no.3
    • /
    • pp.21-47
    • /
    • 2021
  • Purpose - Offshoring has emerged as one of the major trends in international trade and has become one of the strategies for achieving competitiveness in the global market. In spite of this, the expected gains of offshoring can be offset by hidden costs and risks, such as those associated with the COVID-19 pandemic, the trade war between the USA and China, and the ongoing trade dispute between Korea and Japan. To obviate such business failure and prevent critical business blunders, offshoring strategies that efficiently consider both risk elements and potential wealth creation are urgently need. The first purpose of this study is to contribute to the development of more advanced offshoring strategies to help host countries select the best locations to manage supply chain risks and create unique value. The second purpose is to specifically analyze the current status of Korea and provide Korean companies with implications to be considered when deciding whether to offshore or re-shore. Design/methodology - A Network DEA model was applied to measure the comparative location efficiency of national competencies for offshoring strategy from perspectives of wealth creation opportunities (profitability and marketability) and supply chain risk management. The location efficiencies are compared among a total 70 countries selected from the Global Competitiveness Index (GCI) and globally attractive locations outlined by Kearney (2017). For the secondary analysis of efficiency, a t-test examining the nature of competitive advantage and the level of sophistication in production processes was implemented in three divisions. We then analyzed differences in offshoring performance in terms of the identified national traits. Moreover, Tobit regression analysis is conducted to investigate the correlation between value-added business activities and each divisional efficiency, seeking to determine how each degree of value-added business activity influences the increase in offshoring productivity. Findings - Regarding overall location efficiency for offshoring performance, only the USA and Italy were identified as being efficient as host countries for offshoring, under circumstances of advanced development, such as productivity and risk management. Korea ranks 13th among 70 countries. The determinants of national competitiveness depend on national traits (the nature of competitive advantage and business sophistication). Countries with labor/resource advantages and labor-intensive industries are more competitive in terms of marketability than others. In contrast, countries with strong technology-intensive industries benefit offshoring companies, particularly in the technology sector, with the added advantage of supply chain risk management. As the perception of a value chain is broader in a country, it can achieve both production sophistication and competitive advantages such as marketability and SCRM. Originality/value - Existing studies focus on offshoring effectiveness from a company perspective. This paper contributes to comparing country efficiency in producing core competencies related to an offshoring strategy and also segments countries into three performance-based considerations associated with the global offshoring market. It also details Korea's position as an offshoring location according to national efficiency and competency.

TGC-based Fish Growth Estimation Model using Gaussian Process Regression Approach (가우시안 프로세스 회귀를 통한 열 성장 계수 기반의 어류 성장 예측 모델)

  • Juhyoung Sung;Sungyoon Cho;Da-Eun Jung;Jongwon Kim;Jeonghwan Park;Kiwon Kwon;Young Myoung Ko
    • Journal of Internet Computing and Services
    • /
    • v.24 no.1
    • /
    • pp.61-69
    • /
    • 2023
  • Recently, as the fishery resources are depleted, expectations for productivity improvement by 'rearing fishery' in land farms are greatly rising. In the case of land farms, unlike ocean environments, it is easy to control and manage environmental and breeding factors, and has the advantage of being able to adjust production according to the production plan. On the other hand, unlike in the natural environment, there is a disadvantage in that operation costs may significantly increase due to the artificial management for fish growth. Therefore, profit maximization can be pursued by efficiently operating the farm in accordance with the planned target shipment. In order to operate such an efficient farm and nurture fish, an accurate growth prediction model according to the target fish species is absolutely required. Most of the growth prediction models are mainly numerical results based on statistical analysis using farm data. In this paper, we present a growth prediction model from a stochastic point of view to overcome the difficulties in securing data and the difficulty in providing quantitative expected values for inaccuracies that existing growth prediction models from a statistical point of view may have. For a stochastic approach, modeling is performed by introducing a Gaussian process regression method based on water temperature, which is the most important factor in positive growth. From the corresponding results, it is expected that it will be able to provide reference values for more efficient farm operation by simultaneously providing the average value of the predicted growth value at a specific point in time and the confidence interval for that value.

Manufacturing Process of Glucose from Agricultural Byproducts for Feeding a Biodiesel-producing Algae (농업부산물로부터 바이오 디젤 생산용 미세조류 배양액에 첨가할 당의 생산 공정 연구)

  • Kim, Seung-Ri;Han, In-Seob
    • Journal of Appropriate Technology
    • /
    • v.5 no.2
    • /
    • pp.91-96
    • /
    • 2019
  • Microalgae do not require much land and make a higher efficient oil production. However, it costs still much higher than other biodiesel resources, such as crops. Sugars charge 80% of culture media when microalgae are massively cultured in the fermenter. This study aims to develop a cost-efficient process for sugar production from Chinese cabbage byproducts. Pre-treatment with 0.25% H2SO4 was most effective when chopped cabbage was incubated 50℃/130 rpm for 24 hours. To hydrolyze cabbage cellulose, we used cellulases secreted from Trichoderma. harzianum. T. harzianum was cultured at 28℃/pH 7/130 rpm for five days. Optimal enzymatic activity of cellulase was obtained by incubating at 0.24 FPU/ml/45℃/pH 5/130 rpm for three days. In comparison to other agricultural waste, such as rice straw, green tea leaves, and palm residue, Chinese cabbage produced the highest sugar yield. We found the optimal conditions to produce sugar from Chinese cabbage byproducts as a carbon source to culture biodiesel-producing microalgae. The efficient process developed in this study helps microalgae as a sustainable alternative energy source by cost-down.

Understanding and Trends of Roll-to-Roll Operation (롤투롤 공정의 이해 및 동향)

  • Yeong-Woo Ha;Gi-Hwan Kim;Dong-Chan Lim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.1
    • /
    • pp.36-42
    • /
    • 2024
  • Roll-to-roll processing holds an integral position within the manufacturing landscape, and its significance reverberates across numerous industries. This versatile technology platform encompasses a diverse array of process methods and accommodates a wide spectrum of material categories, making it a cornerstone of modern production. Within this expansive domain, two commonly employed coating techniques, namely the slot die and gravure coating methods, have earned their prominence for their precision and efficiency in delivering flawless coatings. Additionally, the realm of drying processes relies heavily on thermal drying, infrared (IR) drying, and ultraviolet (UV) drying methods to expedite the transformation of materials from their liquid or semi-liquid states to solid, ready-to-use products. The undeniable importance of roll-to-roll processing lies in its ability to streamline manufacturing processes, reduce costs, and enhance product quality. This article embarks on a comprehensive journey to fathom the depth of this importance by delving into the intricacies of these common roll-to-roll process methods. Through rigorous research and meticulous data collection, we aim to shed light on the pivotal role these techniques play in shaping various industries and advancing the world of manufacturing. By understanding their significance, we can harness the full potential of roll-to-roll processing and pave the way for innovation and excellence in production.

Technology Standards Policy Support Plans for the Advancement of Smart Manufacturing: Focusing on Experts AHP and IPA (스마트제조 고도화를 위한 기술표준 정책영역 발굴 및 우선순위 도출: 전문가 AHP와 IPA를 중심으로)

  • Kim, Jaeyoung;Jung, Dooyup;Jin, Young-Hyun;Kang, Byung-Goo
    • Informatization Policy
    • /
    • v.30 no.4
    • /
    • pp.40-61
    • /
    • 2023
  • The adoption of smart factories and smart manufacturing as strategies to enhance competitiveness and stimulate growth in the manufacturing sector is vital for a country's future competitiveness and industrial transformation. The government has consistently pursued smart manufacturing innovation policies starting with the Manufacturing Innovation 3.0 strategy in the Ministry of Industry. This study aims to identify policy areas for smart factories and smart manufacturing based on technical standards. Analyzing policy areas at the current stage where the establishment and support of domestic standards aligning with international technical standards are required is crucial. By prioritizing smart manufacturing process areas within the industry, policymakers can make well-informed decisions to advance smart manufacturing without blindly following international standardization in already well-established areas. To achieve this, the study utilizes a hierarchical analysis method including expert interviews and importance-performance analysis for the five major process areas. The findings underscore the importance of proactive participation in standardization for emerging technologies, such as data and security, instead of solely focusing on areas with extensive international standardization. Additionally, policymakers need to consider carbon emissions, energy costs, and global environmental challenges to address international trends in export and digital trade effectively.

Economic Effects Analysis of Self-Produced Forages for Dairy Cows and Hanwoo (자가 생산 풀사료 사양의 경제적 효과분석)

  • In Ho Choi;Jae Seong Choi;Ji Yung Kim;Kyung Il Sung;Byong Wan Kim
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.44 no.1
    • /
    • pp.40-49
    • /
    • 2024
  • This study divided the area capable of producing domestic forage into grazing pasture, hay production area, and silage crop area, calculated the required area according to the forage production volume, and examined whether self-sufficiency in forage leads to cost savings. When the self-sufficiency rate of forage for dairy cows and Hanwoo is 80%, the improvement in profitability per heaf ranges from 3% to 9%, typically around 5%, which is considered a significant benefit for both corporate and individual businesses. The average profit per ranch is expected to increase about KRW 50 million per year, and the country as a whole is expected to reduce forage costs by KRW 0.9 trillion per year. Recently, efforts are being made by the government and local authorities to cultivate summer forage at the rice fields for improving self-sufficiency in forage feed to stabilize rice supply and demand. Furthermore, it is also necessary to conduct research on reducing the cost of concentrated feed and TMR (Total mixed ration).

A Study on the Production Techniques of Indoor and Outdoor 3D Advertising Content

  • Byong-Kwon Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.9
    • /
    • pp.137-144
    • /
    • 2024
  • Digital advertising, both indoors and outdoors, is evolving from traditional 2D formats to more immersive 3D forms. 3D advertising involves creating 3D content and displaying it through large LED installations on two sides of a building's corner, or using 3D hologram projectors indoors. This study examines the production process of 3D hologram projectors used indoors and LED-based 3D content used outdoors, analyzing potential issues and considerations when creating 3D digital advertising content. The findings reveal that while indoor hologram projector content provides 3D effects, the low resolution of the devices makes it challenging to implement complex content. However, they are cost-effective and easy to operate. On the other hand, LED-based 3D advertising content, produced in high resolution, requires more time for content creation and incurs higher hardware installation costs. Despite this, it effectively represents complex content and maximizes visibility due to its enhanced 3D effects. In conclusion, it is crucial to create tailored content that matches the resolution of the display device to maximize 3D effects in advertising. Specifically, when producing 3D billboard-style outdoor advertising content, the structure of the building on which it will be installed must be carefully considered.

Production of Alternative Coagulant Using Waste Activated Alumina and Evaluation of Coagulation Activity (폐촉매 부산물로부터 대체 응집제 제조 및 응집성능 평가)

  • Lee, Sangwon;Moon, Taesup;Kim, Hyosoo;Choi, Myungwon;Lee, Deasun;Park, Sangtae;Kim, Changwon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.7
    • /
    • pp.514-520
    • /
    • 2014
  • In this study, the production potential of alternative coagulant ($Al_2(SO_4)_3$ solution) having the identical coagulation activity with respect to the commercial coagulant was investigated. The raw material of alternative coagulant was a spent catalyst including aluminium (waste activated alumina) generated in the manufacturing process of the polymer. The alternative coagulant was produced through a series of processes: 1) intense heat and grinding, 2) chemical polymerization and substitution with $H_2SO_4$ solution, 3) dissolution and dilution and 4) settling and separation. To determine the optimal operating conditions in the lab-scale autoclave and dissolver, the content of $Al_2O_3$ in alternative coagulant was analyzed according to changes of the purity of sulfuric acid, reaction temperature, injection ratio of sulfuric acid and water in the dissolver. The results showed that the alternative coagulant having the $Al_2O_3$ content of 7~8% was produced under the optimal conditions such as $H_2SO_4$ purity of 50%, reaction temperature of $120^{\circ}C$, injection ratio of $H_2SO_4$ of 5 times and injection ratio of water of 2.3 times in dissolver. In order to evaluate the coagulation activity of the alternative coagulant, the Jar-test was conducted to the effluent in aerobic reactor. As a result, in both cases of Al/P mole of 1.5 and 2.0, the coagulation activity of the alternative coagulant was higher than that of the existing commercial coagulant. When the production costs were compared between the alternative and commercial coagulant through economic analysis, the production cost reduction of about 50% was available in the case of the alternative coagulant. In addition, it was identified that the alternative coagulant could be applied at field wastewater treatment plant without environmental problem through ecological toxicity testing.