• Title/Summary/Keyword: production and consumption

Search Result 2,074, Processing Time 0.032 seconds

The Impacts of Chinese Seaborne Trade Volume on The World Economy (중국 품목별 수출입이 세계 경제에 미치는 영향 실증분석)

  • Ahn, Young-Gyun;Lee, Min-Kyu
    • Korea Trade Review
    • /
    • v.42 no.6
    • /
    • pp.111-129
    • /
    • 2017
  • According to the World Bank statistics, China's contribution to global economic growth during the year of 2013-2016 was estimated at 31.6 percent. This figure is even larger than 29.0 percent, the contribution by summing each contribution of the United States, EU and Japan. The Chinese commodity trade accounts for up to 11.5 percent of world trade volume. Thus, we can consider that the Chinese economy has a strong influence on the global economy. The primary purpose of this study is to analyze the contribution level of Chinese seaborne trade volume on world economy. First, this study conducted a time-lag analysis using Moran test, so we can find that China's level of contribution to global economic growth varies from time to time. The contribution of the first phase (1999-2007) was nearly three times higher than the contributions from the second phase (2008-2016), suggesting that the overall contraction of the global trade volume starting from the subprime mortgage crisis in 2008 has continued until recently and recovery has not even occurred. Second, using the econometrics model, this study conducted an regression analysis of the impact of Chinese imports and exports in chemicals, grain, steel, crude oil, and container on global economic growth. Fixed effects model with time series data has been applied to examine the effect of Chinese seaborne trade volume on global economic growth. According to the empirical analysis of this study, China's exports of steel products, exports of container, imports of containers, imports of crude oil and imports of grain have significant contributions to global economic growth. Estimates of China's exports of steel products, exports of container, imports of containers, imports of crude oil and imports of grain are 1.023, 1.020, 1.019, 1.007 and 1.006, respectively. For example, the estimated value 1.023 of China's exports of steel products means that the growth rate can be 1.023 times higher than the current world GDP growth rate if Chinese seaborne trade volume of exports of steel products increased by one unit (one million tons). This study concludes that the expansion of China's imports and exports should be realized first to increase the global GDP growth rate. The expansion of Chinese trade can lead to a simultaneous stimulus of production and consumption in China, which can even lead to global economic growth ultimately. Thus, depending on how much China's trade will be broaden in the future, the width of global economic growth can be determined.

  • PDF

Effects of aminoethoxyvinylglycine (AVG) and 1-methylcyclopropene (1-MCP) treatments on fruit quality attributes in cold-stored 'Jonathan' apples (수확 후 aminoethoxyvinylglycine(AVG)와 1-methylcyclopropene(1-MCP) 처리가 '홍옥' 사과의 저온저장 중 과실품질에 미치는 영향)

  • Park, Jun-yeun;Kim, Kyoung-ook;Yoo, Jingi;Win, Nay Myo;Lee, Jinwook;Choung, Myoung-Gun;Jung, Hee-Young;Kang, In-Kyu
    • Food Science and Preservation
    • /
    • v.23 no.4
    • /
    • pp.453-458
    • /
    • 2016
  • 'Jonathan' apples are relatively small size which contributes to enhancing fruit consumption and gaining popularity. Thus, this study was carried out to evaluate the effects of AVG (aminoethoxyvinylglycine, ReTain$^{(R)}$), sprayable 1-MCP (1-methylcyclopropene, Harvista$^{TM}$), and fumigation 1-MCP (SmartFresh$^{TM}$) applications on fruit quality attributes and storability in 'Jonathan' apple fruits during cold-stored. The Jonathan fruits were dipped with either ReTain (75 mg/L) or Harvista (125 mg/L) solutions for 5 min, or fumigated with SmartFresh (1 mg/L) for 18 hr before storage at $0{\pm}1^{\circ}C$ for 75 days. Flesh firmness and titratable acidity remained higher in all pre-treated apples than control ones during cold storage period. Flesh firmness was higher for apples treated with ReTain and SmartFresh than samples treated with Harvista, while soluble solid content and respiration rate were not affected by sample pretreatment. Internal ethylene concentration (IEC) of all pretreated apples remained below about $4.5{\mu}L/L$ during the entire storage period while that of control sample greatly increased to $10.29{\mu}L/L$. Ethylene production was much higher in control fruits than in treated ones during cold storage. These results indicated that ReTain and 1-MCP treatments would be considerably effective in retention of fruit quality attributes of 'Jonathan' apple during cold-stored.

Risk Assessment of As, Cd, Cu and Pb in Different Rice Varieties Grown on the Contaminated Paddy Soil (중금속 오염 논토양에서 재배된 벼 품종간 위해성평가 비교)

  • Kim, Won-Il;Kim, Jin-Kyoung;Yoo, Ji-Hyock;Paik, Min-Kyoung;Park, Sang-Won;Kwon, Oh-Kyung;Hong, Moo-Ki;Yang, Jay-E;Kim, Jeong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.1
    • /
    • pp.53-57
    • /
    • 2009
  • Heavy metal pollution may be one of the most serious challenges confront crop production and human health. Therefore, the selection of heavy metal tolerance cultivars which adapted to the contaminated fields will introduced a suitable solution for management this critical environmental risk. The objectives of this research is to assess human health risk using geochemical analyses and exposure assessment of heavy metals in rice cultivars. Risk for inhabitants in the closed mine area was comparatively assessed for As, Cd, Cu and Pb in 10 rice varieties as a major exposure pathway. The average daily dose (ADD) of each heavy metal was estimated by analyzing the exposure pathways to rice and soil. For the non-carcinogenic risk characterization, Hazard Quotient (HQ) and Hazard Index (HI) were calculated using toxicity indices provided by US-EPA IRIS. The different rice varieties revealed a wide range of HI values from 23.6 to 34.3, indicating that all rice varieties have a high potential toxic risk. The DA rice variety showed the lowest HI value while the TB rice variety the highest. The probabilities of cancer risk for As via rice consumption were varied with rice varieties ranging from 2.0E-03 to 3.5E-03 which exceeded the regulatory acceptable risk of 1 in 10,000 set by US-EPA. The DA rice variety also showed the lowest value while the TB rice variety gave the highest value. Our results indicate that risk assessment can be contribute to screen the pollution safe rice cultivars in paddy fields affected by the mining activity.

Effects of Mixing Time for Total Mixed Rations using Corn Silage on Ruminal In situ Dry Matter Degradation and Milk Production in Dairy Cows (옥수수 사일리지 이용 섬유질배합사료의 배합시간에 따른 In situ 반추위 분해율 및 착유우의 산유특성에 미치는 영향)

  • Lim, Dong-Hyun;Ki, Kwang-Seok;Choi, Sun-Ho;Kim, Tae-Il;Park, Seong-Min;Park, Su-Bum;Kwon, Eung-Gi;Kim, Eun-Tae
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.34 no.4
    • /
    • pp.288-295
    • /
    • 2014
  • This study was conducted to evaluate the effect of mixing time for TMR (total mixed rations) mixed with corn silage on particle size, peNDF (physically effective neutral detergent fiber), laceration, and ruminal in situ dry matter degradation. The study also aimed to evaluate the effect of consumption of the TMR on the milk yield and milk components of mid-lactational dairy cows. TMRs were mixed for 30 minutes (T1) and 50 minutes (T2) using the same material. All samples were then analyzed with a Penn State Particle Size Separator (PSPS). The particle size of T1 was significantly lower in the bottom pan (8 mm>) than that of T2 (p<0.01). $peNDF_{&gt;8.0}$ was significantly higher in T1 (17.18%) than in T2 (13.85%) (p<0.01). For ruminal in situ dry matter degradation of particle retention (>19 mm), no significant difference was found after 72 hours incubation, although T1 degradation was significantly higher after 24 hours incubation (p<0.01). Milk yield was no different between the groups of cows, whereas the milk fat from T1 fed cows was significantly higher (p<0.01). The results show that feeding TMR mixed for 30 minutes to dairy cows may improve the physical value of forage without negative effects on the milk yield and milk components.

A Study on the Devitrification of Container Glass with the Amounts of Cullet (유리 용기 생산시 Cullet의 사용에 관한 연구)

  • Noh, Kwang-Hong;Kim, Jong-Ock;Kim, Taik-Nam;Lim, Dae-Young;Park, Won-Kyu;Lee, Chae-Hyun
    • The Journal of Engineering Research
    • /
    • v.3 no.1
    • /
    • pp.199-205
    • /
    • 1998
  • Cullet Quality Control in auto glass bottle factory is the most important in recent days because of the increasing cost of materials in glass bottle. Since the composition of plate glass cullet is similar, the cullet quality using plate cullet in glass bottle factory is easily controlled. In addition to this, the price of plate glass cullet is so low that the cost reduction can be achieved. If the ratio of plate glass cullet and gush is over 25%, the liquidity of glass water become worse, which is caused by different compositions and viscosity of the components. As a results, Furnace bottom temperature becomes low and glass water becomes inhomogeneous. Thus production efficiency of glass bottle becomes low because of increasing devitrification in Dead Corner part in glass melting furnace. Three experimental methods – (1) increasing melting temperature, (2) using Booster, (3) using bubbler – were performed to increase the furnace bottom temperature and glass water homogeneity. The amounts of plate glass cullet was able to increase up to 90%, 70% and 60% without any devitrification using booster, bubbler and the method of glass melting temperature increase from $1480^{\circ}C$ to $1560^{\circ}C$ respectively. It is not possible to increase the glass melting temperature without the reduction of furnace operation time and the increase of fuel cost. The booster process has disadvantage of much electric energy consumption. Since the bubbler process uses physical convection of melting glass based on compression air, the homogeneity of molten glass is not so good as that of booster process but it can reduce the cost of glass bottle.

  • PDF

The Oxygen Production and Consumption in Lake Paldang (팔당호 수체에서 산소의 생성과 소모)

  • Hong, Sun-Hee;Seok, Joung-Hyun;Kim, Dong-Joo;Park, Kyung-Mi;Jeon, Sun-Ok;Ahn, Tae-Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.4 s.92
    • /
    • pp.374-379
    • /
    • 2000
  • To elucidate the degradation mechanisms of organic materials in Lake Paldang, oxygen consuming rates in the water column, high molecular weight (HMW) organic materials and aggregates were analyzed. Also the chlorophyll a concentrations and environmental factors were measured three times in 1999. The concentrations of chlorophyll a ranged $5.5{\sim}14.2\;mg/m^3$ with the highest peak of $57.7\;mg/m^3$ at the surface water in April. Chlorophyll a concentration of aggregates retrieved from traps in 5 m and 20 m depths in May were 2779.5, $9044.8\;mg/m^3$, respectively. Those vlaues were more than 6 times higher compared with other months, and more than 49 times higher than water column chlorophyll a. Oxygen consuming rates of water column were in the narrow range of $0.4{\sim}0.5\;mg\;O_2\;l^{-1}\;day^{-1}$. HMW organic materials were using only small amount of oxygen, $0.01{\sim}0.04\;mg\;O_2\;l^{-1}\;day^{-1}$. The aggregates retrieved from 5 m depth by sediment trap consumed the oxygen in the range of $0.48{\sim}0.69\;mg\;O_2\;l^{-1}\;day^{-1}$, while aggregates collected from 20 m depth, 0.88 to $1.04\;mg\;O_2\;l^{-1}\;day^{-1}$. With these results, the HMW appeared not to be degraded in the water column, instead they seemed to be concentrated and affected the sediment oxygen demand.

  • PDF

Annual Energy Demand Analysis of a Lettuce Growing Plant Factory according to the Environmental Changes (상추 재배 식물공장의 환경변화에 따른 연중 에너지 요구량 분석)

  • Eun Jung Choi;Jaehyun Kim;Sang Min Lee
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.278-284
    • /
    • 2023
  • Recently, a closed-type plant factory has been receiving attention as a advanced agricultural method. It has diverse advantages such as climate-independence, high productivity and stable year-round production. However, high energy cost caused by environmental control system is considered as a challenges of a closed-type plant factory. In order to reduce the energy cost, investigation about energy load which is directly connected to energy consumption needs to be conducted. In this study, energy load changes of a plant factory have been analytically analyzed according to the environmental changes. The target plant factory was a lettuce growing container farm. Firstly, the impact of photoperiod, set temperature and relative humidity change were examined. Under the climate condition of Daejeon in South Korea, increase of photoperiod and set temperature rose a yearly energy demand of a container farm. However, increase of set relative humidity decreased a yearly energy demand. Secondly, the climate environment effect was compared by investigating the energy demand under 9 different climate conditions. As a result, the difference between maximum and minimum value of the yearly energy demand showed 21.7%. Lastly, sensitivity analysis of each parameter (photoperiod, set temperature and relative humidity) has been suggested under 3 different climate conditions. The ratio of heating and cooling demand was varied depending on the climate, so the effect of each parameter became different.

Agronomic and Genetic Evaluation on a Dull Mutant Line Derived from the Sodium Azide Treated 'Namil', a Non-Glutinous Japonica Rice (남일벼 돌연변이 유래 중간찰 계통의 작물학적 특성 및 배유특성 지배유전자위 표지)

  • Chun, Jae-Buhm;Jeung, Ji-Ung;Cho, Seong-Woo;Kim, Woo-Jae;Ha, Ki-Young;Kang, Kyung-Ho;Ko, Jae-Kwon;Kim, Hyun-Soon;Kim, Bo-Kyeong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.60 no.4
    • /
    • pp.448-457
    • /
    • 2015
  • Developing rice lines with various amylose contents is necessary to diverse usages of rice in terms of raw materials for processed food production, and thereby to promote rice consumption in Korea. A rice mutant line, 'Namil(SA)-dull1' was established through sodium azide mutagenesis on 'Namil', a non-glutinous Korean Japonica rice cultivar. Namil(SA)-dull1' had dull endosperm characteristics and the evaluated amylose content was 12.2%. A total of 94 F2 progenies from a cross between 'Namil(SA)-dull1' and 'Milyang23', a non-glutinous Tongil-type rice cultivar, was used for genetic studies on the endosperm amylose content. Association analyses, between marker genotypes of 53 SSR anchor markers and evaluated amylose contents of each 94 F2:3 seeds, initially localized rice chromosome 6 as the harboring place for the modified allele(s) directing low amylose content of 'Namil(SA)-dull1'. By increasing SSR marker density on the putative chromosomal region followed by association analyses, the target region was narrowed down 0.94 Mbp segment, expanding from 28.95 Mbp to 29.89 Mbp, on rice chromosome 6 pseudomolecule. Among the SSR loci, RM7555 explained 84.2% of total variation of amylose contents in the $F_2$ population. Further physical mapping on the target region directing low amylose content of 'Namil(SA)-dull1' would increase the breeding efficiency in developing promising rice cultivars with various endosperm characteristics.

Studies on Sclerotium rolfsii Sacc. isolated from Magnolia kobus DC. in Korea (목련(Magnolia kobus DC.)에서 분리한 흰비단병균(Sclerotium rolfsii Sacc.)에 관한 연구)

  • Kim Kichung
    • Korean journal of applied entomology
    • /
    • v.13 no.3 s.20
    • /
    • pp.105-133
    • /
    • 1974
  • The present study is an attempt to solve the basic problems involved in the control of the Sclerotium disease. The biologic stranis of Sclerotium rolfsii Sacc., pathogen of Sclerotium disease of Magnolia kobus, were differentiated, and the effects of vitamins, various nitrogen and carbon sources on its mycelial growth and sclerotial production have been investigated. In addition the relationship between the cultural filtrate of Penicillium sp. and the growth of Sclerotium rolfsii, the tolerance of its mycelia or sclerotia to moist heat or drought and to Benlate (methyl-(butylcarbamoy 1)-2-benzimidazole carbamate), Tachigaren (3-hydroxy-5-methylisoxazole) and other chemicals were also clarified. The results are summarizee as follows: 1. There were two biologic strains, Type-l and Type-2 among isolates. They differed from each other in the mode of growth and colonial appearance on the media, aversion phenomenon and in their pathogenicity. These two types had similar pathogenicity to the Magnolia kobus and Robinia pseudoacasia, but behaved somewhat differently to the soybaen and cucumber, the Type-l being more virulent. 2. Except potassium nitrite, sodium nitrite and glycine, all of the 12 nitrogen sources tested were utilized for the mycelial growth and sclerotial production of this fungus when 10r/l of thiamine hydrochloride was added in the culture solution. Considering the forms of nitrogen, ammonium nitrogen was more available than nitrate nitrogen for the growth of mycelia, but nitrate nitrogen was better for sclerotia formation. Organic nitrogen showed different availabilities according to compounds used. While nitrite nitrogen was unavailable for both mycelial growth and sclerotial formation whether thiamine hydrochlioride was added or not. 3. Seven kinds of carbon sources examined were not effective in general, as long as thiamine hydrochloride was not added. When thiamine hydrochloride was added, glucose and saccharose exhibited mycelial growth, while rnaltose and soluble starch gave lesser, and xylose, lactose, and glycine showed no effect at all,. In the sclerotial production, all the tested carbon sources, except lactose, were effective, and glucose, maltose, saccharose, and soluble starch gave better results. 4. At the same level of nitrogen, the amount of mycelial growth increased as more carbon Sources were applied but decreased with the increase of nitrogen above 0.5g/1. The amount of sclerotial production decreased wi th the increase of carbon sources. 5. Sclerotium rolfsii was thiamine-defficient and required thiamine 20r/l for maximun growth of mycelia. At a higher concentration of more than 20r/l, however, mycelial growth decreased as the concentration increased, and was inhibited at l50r/l to such a degree of thiamine-free. 6. The effect of the nitrogen sources on the mycelial growth under the presence of thiamine were recognized in the decreasing order of $NH_4NO_3,\;(NH_4)_2SO_4,\;asparagine,\;KNO_3$, and their effects on the sclerotial production in the order of $KNO_3,\;NH_4NO_3,\;asparagine,\;(NH_4)_2SO_4$. The optimum concentration of thiamine was about 12r/l in $KNO_3$ and about 16r/l in asparagine for the growth of mycelia; about 8r/l in $KNO_3$ and $NH_4NO_3$, and 16r/l in asparagine for the production of sclerotia. 7. After the fungus started to grow, the pH value of cultural filtrate rapidly dropped to about 3.5. Hereafter, its rate slowed down as the growth amount increased and did not depreciated below pH2.2. 8. The role of thiamine in the growth of the organism was vital. If thiamine was not added, the combination of biotin, pyridoxine, and inositol did not show any effects on the growth of the organism at all. Equivalent or better mycelial growth was recognized in the combination of thiamine+pyridoxine, thiamine+inositol, thiamine+biotin+pyridoxine, and thiamine+biotin+pyridoxine+inositol, as compared with thiamine alone. In the combinations of thiamine+biotin and thiamine+biotin+inositol, mycelial growth was inhibited. Sclerotial production in dry weight increased more in these combinations than in the medium of thiamine alone. 9. The stimulating effects of the Penicillium cultural filtrate on the mycelial growth was noticed. It increased linearly with the increase of filtrate concentration up to 6-15 ml/50ml basal medium solution. 10. $NH_4NO_3$. as a nitrogen source for mycelial growth was more effective than asparasine regardless of the concentration of cultural filtrate. 11. In the series of fractionations of the cultural filtrate, mycelial growth occured in unvolatile, ether insoluble cation-adsorbed or anion-unadsorbed substance fractions among the fractions of volatile, unvolatile acids, ether soluble organic acids, ether insoluble, cation-adsorbed, cation-unadsorbed, anion-adsorbed and anion-unadsorbed. and anion-un-adsorbed substance tested. Sclerotia were produced only in cation-adsorbed fraction. 12. According to the above results, it was assumed that substances for the mycelial growth and sclerotial formation and inhibitor of sclerotial formation were include::! in cultural filtrate and they were quite different from each other. I was further assumed that the former two substances are un volatile, ether insotuble, and adsorbed to cation-exchange resin, but not adsorbed to anion, whereas the latter is unvolatile, ether insoluble, and not adsorbed to cation or anion-exchange resin. 13. Seven amino acids-aspartic acid, cystine, glysine, histidine, Iycine, tyrosine and dinitroaniline-were detected in the fractions adsorbed to cation-exchange resin by applying the paper chromatography improved with DNP-amino acids. 14. Mycelial growth or sclerotial production was not stimulated significantly by separate or combined application of glutamic acid, aspartic acid, cystine, histidine, and glysine. Tyrosine gave the stimulating effect when applied .alone and when combined with other amino acids in some cases. 15. The tolerance of sclerotia to moist heat varied according to their water content, that was, the dried sclerotia are more tolerant than wet ones. The sclerotia harvested directly from the media, both Type-1 and Type-2, lost viability within 5 minutes at $52^{\circ}C$. Sclerotia dried for 155 days at$26^{\circ}C$ had more tolerance: sclerotia of Type-l were killed in 15 mins. at $52^{\circ}C$ and in 5 mins. at $57^{\circ}C$, and sclerotia of Type-2 were killed in 10 mins. both at $52^{\circ}C$ or $57^{\circ}C$. 16. Cultural sclerotia of both strains maintained good germinability for 132 days at$26^{\circ}C$. Natural sclerotia of them stored for 283 days under air dry condition still had good germinability, even for 443 days: type-l and type-2 maintained $20\%$ and $26.9\%$ germinability, respectively. 17. The tolerance to low temperature increased in the order of mycelia, felts and sclerotia. Mycelia completely lost the ability to grow within 1 week at $7-8^{\circ}C$> below zero, while mycelial felts still maintained the viability after .3 weeks at $7-20^{\circ}C$ below zero, and sclerotia were even more tolerant. 18. Sclerotia of type-l and type-2 were killed when dipped into the $0.05\%$ solution of mercury chloride for 180 mins. and 240 mins. respectively: and in the $0.1\%$ solution, Type-l for 60 mins. and Type-2 for 30 mins. In the $0.125\%$ uspulun solution, Type-l sclerotia were killed in 180 mins., and those of Type-2 were killed for 90 mins. in the$0.125\%$solution. Dipping into the $5\%$ copper sulphate solution or $0.2\%$ solution of Ceresan lime or Mercron for 240 mins. failed to kill sclerotia of either Type-l or Type-2. 19. Inhibitory effect on mycelial growth of Benlate or Tachi-garen in the liquid culture increased as the concentration increased. 6 days after application, obvious inhibitory effects were found in all treatments except Benlate 0.5ppm; but after 12 days, distingushed diflerences were shown among the different concentrations. As compared with the control, mycelial growth was inhibited by $66\%$ at 0.5ppm and by $92\%$ at 2.0ppm of Benlate, and by$54\%$ at 1ppm and about $77\%$ at 1.5ppm or 2.0ppm of Tachigaren. The mycelial growth was inhibited completely at 500ppm of both fungicides, and the formation of sclerotia was checked at 1,000ppm of Benlate ant at 500ppm or 1,000ppm of Tachigaren. 20. Consumptions of glucose or ammonium nitrogen in the culture solution usually increased with the increment of mycelial growth, but when Benlate or Tachigaren were applied, consumptions of glucose or ammonium nitrogen were inhibited with the increment of concentration of the fungicides. At the low concentrations of Benlate (0.5ppm or 1ppm), however, ammonium nitrogen consumption was higher than that of the ontrol. 21. The amount of mycelia produced by consuming 1mg of glucose or ammonium nitrogen in the culture solution was lowered markedly by Benlate or Tachigaren. Such effects were the severest on the third day after their treatment in all concentrations, and then gradually recovered with the progress of time. 22. In the sand culture, mycelial growth was not inhibited. It was indirectly estimated by the amount of $CO_2$ evolved at any concentrations, except in the Tachigaren 100mg/g sand in which mycelial growth was inhibited significantly. Sclerotial production was completely depressed in the 10mg/g sand of Benlate or Tachigaren. 23. There was no visible inhibitory effect on the germination of sclerotia when the sclerotia were dipped in the solution 0.1, 1.0, 100, 1.000ppm of Benlate or Tachigaren for 10 minutes or even 20 minutes.

  • PDF

Influence of Oxygen Concentration on the Food Consumption and Growth of Common Carp, Cyprinus carpio L. (잉어 Cyprinus carpio의 먹이 섭취량과 성장에 미치는 용존산소량의 영향)

  • SAIFABADI Jafar;KIM In-Bae
    • Journal of Aquaculture
    • /
    • v.2 no.2
    • /
    • pp.53-90
    • /
    • 1989
  • Feeding proper level of ration matchable with the appetite of fish will enhance production and also prevent waste of food and its consequence, side effects such as pollution of culture medium. To pursue this goal, elaborate studies on dissolved oxygen concentrations- as the major force in inducing appetite and the growth outcome are necessary. The growth of common carp of 67, 200, 400, 600, and 800 gram size groups was studied at oxygen concentrations ranging from 2.0 to 6 mg/$\iota$ in relation to rations from 1 to as many percent of the initial body weight as could be consumed under constant temperature of $25^{\circ}C$. The results from the experiments are summarized as followings; 1. Appetite: The smaller fish exhibited higher degree of appetite than the bigger ones at the same oxygen concentrations. The bigger the fish the less tolerant it was to the lower oxygen thersholds, and the degree of tolerence decreased as ration level increased. 2. Growth : Growth rate (percent per day) increased - unless consumption was suppressed by low oxygen levels- as the ration was increased to maximum. In case of 67 g fish, it reached the highest point of $5.05\%$ / day at $7\%$ ration under 5.0 mg/$\iota$ of oxygen. In case of 200 g fish, the maximum growth rate of $3.75\%$/day appeared at the maximum ration of $6\%$ under 5.5 mg/$\iota$ of oxygen. In 400 g fish, the highest growth of $3.37\%$/day occurred at the maximum ration of $5\%$ and 6.0 mg/$\iota$ of oxygen. In 600 g fish, the highest growth rate of $2.82\%$ /day was at the maximum ration of $4\%$ under 5.5 mg/$\iota$ oxygen. In case of 800g fish, the highest growth rate of $1.95\%$/day was at maximum tested ration of $3\%$ under 5.0 mg/$\iota$ oxygen. 3. Food Conversion Efficiency: Food conversion efficiency ($\%$ dry feed converted into the fish tissue) first increased as the ration was increased, reached maximum at certain food level, then started decreasing with further increase in the ration. The maximum conversion efficiency stood at higher feeding rate for the smaller fish than the larger ones. In case of 67 g fish, the maximum food conversion efficiency was at $4\%$ ration within 3.0-4.0 mg/$\iota$ oxygen. In 200g fish, the maximum efficiency was at $3\%$ ration within 4.0-4.5 mg/$\iota$ oxygen. In 400g fish, the maximum efficiency was at $2\%$ ration within 4.0 - 4.5 mg/$\iota$ oxygen. In 600 and 800g fish, the maximum conversion efficiency shifted to the lowest ration ($1\%$) and lower oxygen ranges. 4. Behaviour: The fish within uncomfortably low oxygen levels exhibited suppressed appetite and movements and were observed to pass feces quicker and in larger quantity than the ones in normal condition; in untolerably low oxygen the fish were lethargic, vomited, and had their normal skin color changed into pale yellow or grey patches. All these processes contributed to reducing food conversion efficiency. On the other hand, the fish within relatively higher oxygen concentrations exhibited higher degree of movement and their food conversion tended to be depressed when compared with sister groups under corresponding size and ration within relatively low oxyen level. 5. Suitability of Oxygen Ranges to Rations: The oxygen level of 2.0- 2.5 mg/$\iota$ was adequate to sustain appetite at $1\%$ ration in all size groups. As the ration was increased higher oxygen was required to sustain the fish appetite and metabolic activity, particularly in larger fish. In 67g fish, the $2\%$ ration was well supported by 2.0-2.5 mg/$\iota$ range; as the ration increased to $5\%$, higher range of 3.0-4.0 mg/$\iota$ brought better appetite and growth; from 5 till $7\%$ (the last tested ration for 67 g fish) oxygen levels over 4.0 mg/$\iota$ could sustain appetite. In 200 g fish, the 2 and $3\%$ rations brought the best growth and conversion rates at 3.5-4.5 mg/$\iota$ oxygen level; from 3 till $6\%$ (the last tested ration at 200 g fish) oxyge groups over 4.5 mg/$\iota$ were matchable with animal's appetite. In 400, 600, and 800 g fish, all the rations above $2\%$ had to be generally supported with oxygen levels above 4.5 mg/$\iota$.

  • PDF