• 제목/요약/키워드: product gas yield

검색결과 80건 처리시간 0.032초

$CO_2$ Laser Induced Decomposition of 1-Bromo-3-Chloropropane

  • Byoung Soo Chun;Nam Woong Song;Kwang Yul Choo
    • Bulletin of the Korean Chemical Society
    • /
    • 제11권3호
    • /
    • pp.214-220
    • /
    • 1990
  • We have studied the Infrared Multiphoton Dissociation (IRMPD) of 1-bromo-3-chloropropane by using the pulsed $CO_2$ laser. The product yields and the HCl/HBr branching ratios in IRMPD of $BrCH_2CH_2CH_2Cl$ are studied under the focused beam geometry as a function of buffer gas (He) pressure, laser energy, and photolysing wavelength. It is observed that the total dissociation yield has a laser energy dependence of 1.8-2.0 power order and the branching ratio is very slightly dependent on the pulse energy for the laser lines employed. The dependences of total dissociation yield and branching ratio on the buffer gas pressures show that the dissociation yield monotonically decreases and the branching ratio slightly decreases with the increase of the buffer gas pressure. The Energy-Grained Master Equation (EGME) was applied to explain the laser pulse energy and the buffer gas pressure(He) dependence of the dissociation yield and the branching ratio.

Synthesis of Perfluoroalkyl Alcohol, 3-(Perfluorooctyl)propan-2-ol, Using Two-Step Alcoholization

  • Nguyen, Trung Hieu;Tae, Beom-Seok;Park, Jun-Seo;Lee, Kwang-Nam
    • 대한화학회지
    • /
    • 제56권5호
    • /
    • pp.603-608
    • /
    • 2012
  • 3-(Perfluorooctyl)propan-2-ol was synthesized using an alcoholization process. The synthesis consisted of two steps: (1) addition of the olefin propylene to perfluorooctyl iodide to yield the corresponding iodo-adduct perfluorooctyl propyl iodide and (2) hydrolysis of the adduct reacted with water and dimethylformamide to yield the final product. The adduct and product were analyzed using gas chromatography to determine the yield and purity. The optimal conditions for each step of the process were determined, and a 93% yield of adduct and 95% yield of final product was achieved.

ABS-Polyethylene 혼합물의 저온 열분해 특성평가 (Liquefaction Characteristics of ABS-polyethylene Mixture by a Low-Temperature Pyrolysis)

  • 최홍준;정상문;이봉희
    • Korean Chemical Engineering Research
    • /
    • 제50권2호
    • /
    • pp.223-228
    • /
    • 2012
  • ABS와 폴리에틸렌(Polyethylene, PE) 및 ABS-PE 혼합물의 저온열분해를 회분식 반응기를 이용하여 상압 및 $450^{\circ}C$에서 실행하였다. 열분해 시간은 20~80분까지 하였고 열분해로 생성된 성분은 지식경제부에서 고시한 증류성상온도에 따라 가스, 가솔린, 등유, 경유, 중유로 분류하였다. ABS와 PE의 혼합 폐플라스틱의 열분해 전환율은 PE의 함량이 증가할수록 증가하는 것으로 나타났다. 열분해생성물의 수율은 PE의 함량이 높을수록 중유 > 가스 > 가솔린 > 경유 > 등유 순으로 회수되었다.

Coal pyrolysis behaviors at supercritical CO2 conditions

  • Hakduck Kim;Jeongmin Choi;Heechang Lim;Juhun Song
    • Advances in Energy Research
    • /
    • 제8권4호
    • /
    • pp.265-273
    • /
    • 2022
  • In this study, a product gas yield and carbon conversion were measured during the coal pyrolysis. The pyrolysis process occurred under two different atmospheres such as subcritical (45 bar, 10℃) and supercritical CO2 condition (80 bar, 35℃). Under the same pressure (80 bar), the atmosphere temperature increased from 35℃ to 45℃ to further examine temperature effect on the pyrolysis at supercritical CO2 condition. For all three cases, a power input supplied to heating wire placed below coal bed was controlled to make coal bed temperature constant. The phase change of CO2 atmosphere and subsequent pyrolysis behaviors of coal bed were observed using high-resolution camcorder. The pressure and temperature in the reactor were controlled by a CO2 pump and heater. Then, the coal bed was heated by wire heater to proceed the pyrolysis under supercritical CO2 condition.

ABS 수지의 저온 열분해에 의한 액화특성 연구 (Study on the Liquefaction Characteristics of ABS Resin in a Low-Temperature Pyrolysis)

  • 최홍준;정상문;이봉희
    • Korean Chemical Engineering Research
    • /
    • 제49권4호
    • /
    • pp.417-422
    • /
    • 2011
  • ABS 수지의 반응온도 및 반응시간에 따른 저온 열분해를 연구하기 위하여 ABS 수지의 저온열분해를 회분식 반응기를 이용하여 상압하에서 $425{\sim}500^{\circ}C$ 영역에서 수행하였다. 열분해 시간은 20~80분까지 하였고 열분해로 생성된 성분은 지식경제부에서 고시한 증류성상온도에 따라 가스, 가솔린, 등유, 경유, 중유로 분류하였다. ABS 수지의 열분해에서 80% 이상의 전환율을 얻기 위해서는 반응온도 $500^{\circ}C$ 이상에서 반응시간 60분 이상을 유지하여야 한다. 최종적으로 생성된 분해유는 가스 중유 > 가솔린 > 경유 > 등유 순으로 나타났으며, 온도와 반응시간이 증가함에 따라 중유 및 경유 성분이 늘어났다.

저온 열분해시 HDPE 및 LDPE의 액화 특성 (Liquefaction Characteristics of HDPE and LDPE in Low Temperature Pyrolysis)

  • 이봉희;박수열;김지현
    • 한국응용과학기술학회지
    • /
    • 제23권4호
    • /
    • pp.307-318
    • /
    • 2006
  • The pyrolysis of high density polyethylene(HDPE) and low density polyethylene(LDPE) was carried out at temperature between 425 and $500^{\circ}C$ from 35 to 80 minutes. The liquid products formed during pyrolysis were classified into gasoline, kerosene, gas oil and wax according to the petroleum product quality standard of Korea Petroleum Quality Inspection Institute. The conversion and yield of liquid products for HDPE pyrolysis increased continuously according to pyrolysis temperature and pyrolysis time. The influence of pyrolysis temperature was more severe than pyrolysis time for the conversion of HDPE. For example, the liquid products of HDPE pyrolysis at $450^{\circ}C$ for 65 minutes were ca. 30wt.% gas oil, 15wt.% wax, 14wt.% kerosene and 11wt.% gasoline. The increase of pyrolysis temperature up to $500^{\circ}C$ showed the increase of wax product and the decrease of kerosene. The conversion and yield of liquid products for LDPE pyrolysis continuously increased according to pyrolysis temperature and pyrolysis time, similar to HDPE pyrolysis. The liquid products of LDPE pyrolysis at $450^{\circ}C$ for 65 minutes were ca. 27wt.% gas oil, 18wt.% wax, 16wt.% kerosene and 13wt.% gasoline.

폐플라스틱의 열분해 유화기술 개발 (Process Development of Pyrolysis Liquefaction for Waste Plastics)

  • 노남선;신대현;박소원;이경환;김광호;전상구;조봉규
    • 신재생에너지
    • /
    • 제2권2호
    • /
    • pp.118-125
    • /
    • 2006
  • The target of this work was the process development of demonstration plant to produce the high quality alternative fuel oil by the pyrolysis of mixed plastic waste. In the first step of research, the bench-scale units of 70 t/y and the pilot plant of 360 t/y had been developed. Main research contents in this step were the process performance test of pilot plant of 360 ton/year and the development of demonstration plant of 3,000 t/y, which was constructed at Korea R & D Company in Kimjae City. The process performance of pilot plant of 360 t/y showed about 80% yield of liquid product, which was obtained by both light gas oil(LGO) and heavy gas oil(HGO), The boiling point range distribution of LO product that was mainly consisting of olefin components in PONA group appeared at between that of commercial gasoline and kerosene. On the other hand, HO product was mainly paraffin and olefin components and also appeared at upper temperature distribution range than commercial diesel. Gas product showed a high fraction of $C_3\;and\;C_4$ product like LPG composition, but also a high fraction of $CO_2$ and CO by probably a little leak of process.

  • PDF

유동층(流動層) 급속열분해(急速熱分解)에 의한 폐(廢) Polypropylene fraction으로부터 BTEX-aromatics의 회수(回收) (Recovery of BTEX-aromatics from Post-consumer Polypropylene Fraction by Pyrolysis Using a Fluidized Bed)

  • 조민환;정수화;김주식
    • 자원리싸이클링
    • /
    • 제17권6호
    • /
    • pp.50-56
    • /
    • 2008
  • Post-consumed플라스틱 중 폐 polypropylene fraction으로 분리된 재료를 이용하여 열분해 실험을 수행하였다. 본 연구의 목적은 열분해 생성오일 중 용제로 사용이 가능한 BTEX-aromatics 수율이 반웅온도에 따라 어떤 영향을 받는지 고찰하는 것이었다. 이를 위하여 열전달이 우수한 유동층 반응기를 이용하여 $650^{\circ}C$에서 $700^{\circ}C$ 사이의 반응온도에서 열분해 실험을 진행하였다. 본 실험에서는 오일생성 극대화를 위해 열분해 반응 중 생성되는 가스를 유동화 가스로 사용하였으며, 유동화 가스의 유량과 시료 투입율은 실험 중에 일정하게 유지하였다. 실험결과 gas, oil 및 char가 반응 생성물로 얻어졌다. 생성 가스는 GCs(TCD, FID)를 사용하여 정량 분석하였고 정성적 분석을 위해서는 GC-MS 시스템을 이용하였다 정확한 분석을 위해서 생성오일은 진공 증류하여 distillation residue를 분리하였으며, 증류한 oil은 GC-MS 통해 정성 및 정량적 분석을 수행하였다. 반응온도가 높아질수록 distillation oil중의 BTEX-aromatics의 함량은 증가하였으며 $695^{\circ}C$에서 약 30% 정도의 함량을 나타내었다. 생성 가스는 대부분 $CH_4$, $C_2H_4$, $C_2H_6$, $C_3H_6$, $C_4H_{10}$로 구성되어 있었으며, 고위 발열량은 약 45 MJ/kg로서 열분해 공정 에너지원이나 기타 연료용 에너지원으로 사용가능할 것으로 평가되었다.

Light Tar Decomposition of Product Pyrolysis Gas from Sewage Sludge in a Gliding Arc Plasma Reformer

  • Lim, Mun-Sup;Chun, Young-Nam
    • Environmental Engineering Research
    • /
    • 제17권2호
    • /
    • pp.89-94
    • /
    • 2012
  • Pyrolysis/gasification technology utilizes an energy conversion technique from various waste resources, such as biomass, solid waste, sewage sludge, and etc. to generating a syngas (synthesis gas). However, one of the major problems for the pyrolysis gasification is the presence of tar in the product gas. The tar produced might cause damages and operating problems on the facility. In this study, a gliding arc plasma reformer was developed to solve the previously acknowledged issues. An experiment was conducted using surrogate benzene and naphthalene, which are generated during the pyrolysis and/or gasification, as the representative tar substance. To identify the characteristics of the influential parameters of tar decomposition, tests were performed on the steam feed amount (steam/carbon ratio), input discharge power (specific energy input, SEI), total feed gas amount and the input tar concentration. In benzene, the optimal operating conditions of the gliding arc plasma 2 in steam to carbon (S/C) ratio, 0.98 $kWh/m^3$ in SEI, 14 L/min in total gas feed rate and 3.6% in benzene concentration. In naphthalene, 2.5 in S/C ratio, 1 $kWh/m^3$ in SEI, 18.4 L/min in total gas feed rate and 1% in naphthalene concentration. The benzene decomposition efficiency was 95%, and the energy efficiency was 120 g/kWh. The naphthalene decomposition efficiency was 79%, and the energy yield was 68 g/kWh.

석탄액화시 첨가제에 의한 수율 향상 효과 (Effects of Additives on Yield of Coal Liquefaction)

  • 김종원;명광식;김연순;심규성;한상도
    • 에너지공학
    • /
    • 제5권2호
    • /
    • pp.176-182
    • /
    • 1996
  • 소형의 고온 고압 반응장치에서의 석탄액화시 흑액, 리그닌, NaOH, 물, 나무 등을 첨가제로 사용하여 375$^{\circ}C$ 근처에서의 액체생성물의 수율과 비점분포를 분석하였다. 흑액을 석탄액화 과정 중에 첨가하게 되면 석탄액화율이 38.6% 정도 증가하나, 액화율 상승효과의 대부분은 NaOH 때문인 것으로 판단되며, 흑액 중에 포함된 황화합물은 액화과정에서 수소와 결합함으로서 휘발성의 자극성 악취를 발생시키기 때문에 불리한 요인이 될 수 있다. 액화공정에 물이 존재하면 액화 수율에는 변화가 없었으나 액화생성물 중에는 저비점 성분이 증가되며, 가스 중에는 CO가 줄고, $CO_2$성분이 증가되었다. 나무를 석탄액화시 첨가하면 생성물 중 가스의 비율이 증가하고 액체생성물도 다소 증가하게 되는데, 석탄전환율로 보면 나무의 첨가효과는 거의 무시할 수 있는 값이며, 액체 생성물 수율만으로 보면 375$^{\circ}C$에서는 3%, 40$0^{\circ}C$에서는 약 8%정토의 액체생성물의 수율 증가를 보여주었으며, 4$25^{\circ}C$에서는 가스생성물의 증가로 액체생성물의 오히려 감소하였다.

  • PDF