• Title/Summary/Keyword: product gas yield

Search Result 80, Processing Time 0.02 seconds

$CO_2$ Laser Induced Decomposition of 1-Bromo-3-Chloropropane

  • Byoung Soo Chun;Nam Woong Song;Kwang Yul Choo
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.3
    • /
    • pp.214-220
    • /
    • 1990
  • We have studied the Infrared Multiphoton Dissociation (IRMPD) of 1-bromo-3-chloropropane by using the pulsed $CO_2$ laser. The product yields and the HCl/HBr branching ratios in IRMPD of $BrCH_2CH_2CH_2Cl$ are studied under the focused beam geometry as a function of buffer gas (He) pressure, laser energy, and photolysing wavelength. It is observed that the total dissociation yield has a laser energy dependence of 1.8-2.0 power order and the branching ratio is very slightly dependent on the pulse energy for the laser lines employed. The dependences of total dissociation yield and branching ratio on the buffer gas pressures show that the dissociation yield monotonically decreases and the branching ratio slightly decreases with the increase of the buffer gas pressure. The Energy-Grained Master Equation (EGME) was applied to explain the laser pulse energy and the buffer gas pressure(He) dependence of the dissociation yield and the branching ratio.

Synthesis of Perfluoroalkyl Alcohol, 3-(Perfluorooctyl)propan-2-ol, Using Two-Step Alcoholization

  • Nguyen, Trung Hieu;Tae, Beom-Seok;Park, Jun-Seo;Lee, Kwang-Nam
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.5
    • /
    • pp.603-608
    • /
    • 2012
  • 3-(Perfluorooctyl)propan-2-ol was synthesized using an alcoholization process. The synthesis consisted of two steps: (1) addition of the olefin propylene to perfluorooctyl iodide to yield the corresponding iodo-adduct perfluorooctyl propyl iodide and (2) hydrolysis of the adduct reacted with water and dimethylformamide to yield the final product. The adduct and product were analyzed using gas chromatography to determine the yield and purity. The optimal conditions for each step of the process were determined, and a 93% yield of adduct and 95% yield of final product was achieved.

Liquefaction Characteristics of ABS-polyethylene Mixture by a Low-Temperature Pyrolysis (ABS-Polyethylene 혼합물의 저온 열분해 특성평가)

  • Choi, Hong-Jun;Jeong, Sang Mun;Lee, Bong-Hee
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.223-228
    • /
    • 2012
  • The low-temperature pyrolysis of ABS, polyethylene (PE) and an ABS-polyethylene (ABS-PE) mixture was conducted in a batch reactor at $450^{\circ}C$. The conversion and the product yield were measured as a function of the reaction time with a variation of the mixture composition. The oil products formed during pyrolysis were classified into gas, gasoline, kerosene, gas oil and heavy oil according to the petroleum product quality standard of the Ministry of Knowledge Economy. The pyrolysis conversion increases with an increase in the content of PE. The yield of the pyrolytic products was ranked as heavy oil>gas>gasoline>gas oil>kerosene as the content of PE in the mixture increases.

Coal pyrolysis behaviors at supercritical CO2 conditions

  • Hakduck Kim;Jeongmin Choi;Heechang Lim;Juhun Song
    • Advances in Energy Research
    • /
    • v.8 no.4
    • /
    • pp.265-273
    • /
    • 2022
  • In this study, a product gas yield and carbon conversion were measured during the coal pyrolysis. The pyrolysis process occurred under two different atmospheres such as subcritical (45 bar, 10℃) and supercritical CO2 condition (80 bar, 35℃). Under the same pressure (80 bar), the atmosphere temperature increased from 35℃ to 45℃ to further examine temperature effect on the pyrolysis at supercritical CO2 condition. For all three cases, a power input supplied to heating wire placed below coal bed was controlled to make coal bed temperature constant. The phase change of CO2 atmosphere and subsequent pyrolysis behaviors of coal bed were observed using high-resolution camcorder. The pressure and temperature in the reactor were controlled by a CO2 pump and heater. Then, the coal bed was heated by wire heater to proceed the pyrolysis under supercritical CO2 condition.

Study on the Liquefaction Characteristics of ABS Resin in a Low-Temperature Pyrolysis (ABS 수지의 저온 열분해에 의한 액화특성 연구)

  • Choi, Hong Jun;Jeong, Sang Mun;Lee, Bong-Hee
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.417-422
    • /
    • 2011
  • The low temperature pyrolysis of ABS resin has been carried out in a batch reactor under the atmospheric pressure. The effect of the reaction temperature on the yield of pyrolytic oils has been determined in the present study. The oil products formed during pyrolysis were classified into gas, gasoline, kerosene, gas oil and heavy oil according to the petroleum product quality standard of Ministry of Knowledge Economy. The conversion reaches 80% after 60 min at $500^{\circ}C$ in the pyrolysis of ABS resin. The amount of the final product was ranked as gas heavy oil > gasoline > gas oil > kerosen based on the yield. The yields of heavy oil and gas oil increase with an increase in the reaction time and temperature.

Liquefaction Characteristics of HDPE and LDPE in Low Temperature Pyrolysis (저온 열분해시 HDPE 및 LDPE의 액화 특성)

  • Lee, Bong-Hee;Park, Su-Yul;Kim, Ji-Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.307-318
    • /
    • 2006
  • The pyrolysis of high density polyethylene(HDPE) and low density polyethylene(LDPE) was carried out at temperature between 425 and $500^{\circ}C$ from 35 to 80 minutes. The liquid products formed during pyrolysis were classified into gasoline, kerosene, gas oil and wax according to the petroleum product quality standard of Korea Petroleum Quality Inspection Institute. The conversion and yield of liquid products for HDPE pyrolysis increased continuously according to pyrolysis temperature and pyrolysis time. The influence of pyrolysis temperature was more severe than pyrolysis time for the conversion of HDPE. For example, the liquid products of HDPE pyrolysis at $450^{\circ}C$ for 65 minutes were ca. 30wt.% gas oil, 15wt.% wax, 14wt.% kerosene and 11wt.% gasoline. The increase of pyrolysis temperature up to $500^{\circ}C$ showed the increase of wax product and the decrease of kerosene. The conversion and yield of liquid products for LDPE pyrolysis continuously increased according to pyrolysis temperature and pyrolysis time, similar to HDPE pyrolysis. The liquid products of LDPE pyrolysis at $450^{\circ}C$ for 65 minutes were ca. 27wt.% gas oil, 18wt.% wax, 16wt.% kerosene and 13wt.% gasoline.

Process Development of Pyrolysis Liquefaction for Waste Plastics (폐플라스틱의 열분해 유화기술 개발)

  • Nho Nam-Sun;Shin Dae-Hyun;Park Sou-Won;Lee Kyong-Hwan;Kim Kwang-Ho;Jeon Sang-Goo;Cho Bong-Gyu
    • New & Renewable Energy
    • /
    • v.2 no.2 s.6
    • /
    • pp.118-125
    • /
    • 2006
  • The target of this work was the process development of demonstration plant to produce the high quality alternative fuel oil by the pyrolysis of mixed plastic waste. In the first step of research, the bench-scale units of 70 t/y and the pilot plant of 360 t/y had been developed. Main research contents in this step were the process performance test of pilot plant of 360 ton/year and the development of demonstration plant of 3,000 t/y, which was constructed at Korea R & D Company in Kimjae City. The process performance of pilot plant of 360 t/y showed about 80% yield of liquid product, which was obtained by both light gas oil(LGO) and heavy gas oil(HGO), The boiling point range distribution of LO product that was mainly consisting of olefin components in PONA group appeared at between that of commercial gasoline and kerosene. On the other hand, HO product was mainly paraffin and olefin components and also appeared at upper temperature distribution range than commercial diesel. Gas product showed a high fraction of $C_3\;and\;C_4$ product like LPG composition, but also a high fraction of $CO_2$ and CO by probably a little leak of process.

  • PDF

Recovery of BTEX-aromatics from Post-consumer Polypropylene Fraction by Pyrolysis Using a Fluidized Bed (유동층(流動層) 급속열분해(急速熱分解)에 의한 폐(廢) Polypropylene fraction으로부터 BTEX-aromatics의 회수(回收))

  • Cho, Min-Hwan;Jeong, Soo-Hwa;Kim, Joo-Sik
    • Resources Recycling
    • /
    • v.17 no.6
    • /
    • pp.50-56
    • /
    • 2008
  • A polypropylene fraction collected from the stream of post-consumer plastics was pyrolyzed. The aim of this study is to observe the dependence of yield of BTEX-aromatics normally used as solvent on the reaction temperature. To reach the goal, three experiments were carried out at different temperature between 650 and $700^{\circ}C$, using a fluidized bed reactor that shows an excellent heat transfer. In the experiments, product gases were used as a fluidizing medium to maximize the amount of BTEX-aromatics at fixed flow rate and feed rate during the pyrolysis. Oil, gas and char were obtained as product fractions. Product gases were analyzed with GCs(TCD, FID) and with a GC-MS system for qualitative analysis. For an accurate analysis of product oil, the product oil was distilled under vacuum, and separated the distillation residues from oil fractions that were actually analyzed with a GC-MS system. As the reaction temperature went higher, the content of BTEX-aromatics increased. The maximal yield of BTEX-aromatics was obtained at $695^{\circ}C$ with a value of about 30%. The main compounds of product gas were $CH_4$, $C_2H_4$, $C_2H_6$, $C_3H_6$, $C_4H_{10}$ and the product gas had an higher heating value about 45MJ/kg. It could be used as a heat source for a pyrolysis plant or for other fuel applications.

Light Tar Decomposition of Product Pyrolysis Gas from Sewage Sludge in a Gliding Arc Plasma Reformer

  • Lim, Mun-Sup;Chun, Young-Nam
    • Environmental Engineering Research
    • /
    • v.17 no.2
    • /
    • pp.89-94
    • /
    • 2012
  • Pyrolysis/gasification technology utilizes an energy conversion technique from various waste resources, such as biomass, solid waste, sewage sludge, and etc. to generating a syngas (synthesis gas). However, one of the major problems for the pyrolysis gasification is the presence of tar in the product gas. The tar produced might cause damages and operating problems on the facility. In this study, a gliding arc plasma reformer was developed to solve the previously acknowledged issues. An experiment was conducted using surrogate benzene and naphthalene, which are generated during the pyrolysis and/or gasification, as the representative tar substance. To identify the characteristics of the influential parameters of tar decomposition, tests were performed on the steam feed amount (steam/carbon ratio), input discharge power (specific energy input, SEI), total feed gas amount and the input tar concentration. In benzene, the optimal operating conditions of the gliding arc plasma 2 in steam to carbon (S/C) ratio, 0.98 $kWh/m^3$ in SEI, 14 L/min in total gas feed rate and 3.6% in benzene concentration. In naphthalene, 2.5 in S/C ratio, 1 $kWh/m^3$ in SEI, 18.4 L/min in total gas feed rate and 1% in naphthalene concentration. The benzene decomposition efficiency was 95%, and the energy efficiency was 120 g/kWh. The naphthalene decomposition efficiency was 79%, and the energy yield was 68 g/kWh.

Effects of Additives on Yield of Coal Liquefaction (석탄액화시 첨가제에 의한 수율 향상 효과)

  • 김종원;명광식;김연순;심규성;한상도
    • Journal of Energy Engineering
    • /
    • v.5 no.2
    • /
    • pp.176-182
    • /
    • 1996
  • The effects of some additives (black liquor, NaOH, water and wood) on the conversion of coal and product were investigated in the lab-scale, high pressure reacting system around 375$^{\circ}C$. The addition of black liquor enhances the coal conversion yield about 38.6%, which is mainly due to NaOH in black liquor. Also, sulfur of the black liquor in coal liquefaction process evolved hydrogen sulfide, which causes the odor problem. Addition of water in coal liquefaction increased CO$_2$content in the gas phase, and low boiling range components in liquid products. Coprocessing of wood and coal at 400$^{\circ}C$ increased yield of liquid product about 8%, but higher temperature above 400$^{\circ}C$ reduced liquid product due to increase of gas products.

  • PDF