• Title/Summary/Keyword: product categories

Search Result 512, Processing Time 0.017 seconds

Consumer Responses to Retailer's Location-based Mobile Shopping Service : Focusing on PAD Emotional State Model and Information Relevance (유통업체의 위치기반 모바일 쇼핑서비스 제공에 대한 소비자 반응 : PAD 감정모델과 정보의 상황관련성을 중심으로)

  • Lee, Hyun-Hwa;Moon, Hee-Kang
    • Journal of Distribution Research
    • /
    • v.17 no.2
    • /
    • pp.63-92
    • /
    • 2012
  • This study investigated consumer intention to use a location-based mobile shopping service (LBMSS) that integrates cognitive and affective responses. Information relevancy was integrated into pleasure-arousal-dominance (PAD) emotional state model in the present study as a conceptual framework. The results of an online survey of 335 mobile phone users in the U.S. indicated the positive effects of arousal and information relevancy on pleasure. In addition, there was a significant relationship between pleasure and intention to use a LBMSS. However, the relationship between dominance and pleasure was not statistically significant. The results of the present study provides insight to retailers and marketers as to what factors they need to consider to implement location-based mobile shopping services to improve their business performance. Extended Abstract : Location aware technology has expanded the marketer's reach by reducing space and time between a consumer's receipt of advertising and purchase, offering real-time information and coupons to consumers in purchasing situations (Dickenger and Kleijnen, 2008; Malhotra and Malhotra, 2009). LBMSS increases the relevancy of SMS marketing by linking advertisements to a user's location (Bamba and Barnes, 2007; Malhotra and Malhotra, 2009). This study investigated consumer intention to use a location-based mobile shopping service (LBMSS) that integrates cognitive and affective response. The purpose of the study was to examine the relationship among information relevancy and affective variables and their effects on intention to use LBMSS. Thus, information relevancy was integrated into pleasure-arousal-dominance (PAD) model and generated the following hypotheses. Hypothesis 1. There will be a positive influence of arousal concerning LBMSS on pleasure in regard to LBMSS. Hypothesis 2. There will be a positive influence of dominance in LBMSS on pleasure in regard to LBMSS. Hypothesis 3. There will be a positive influence of information relevancy on pleasure in regard to LBMSS. Hypothesis 4. There will be a positive influence of pleasure about LBMSS on intention to use LBMSS. E-mail invitations were sent out to a randomly selected sample of three thousand consumers who are older than 18 years old and mobile phone owners, acquired from an independent marketing research company. An online survey technique was employed utilizing Dillman's (2000) online survey method and follow-ups. A total of 335 valid responses were used for the data analysis in the present study. Before the respondents answer any of the questions, they were told to read a document describing LBMSS. The document included definitions and examples of LBMSS provided by various service providers. After that, they were exposed to a scenario describing the participant as taking a saturday shopping trip to a mall and then receiving a short message from the mall. The short message included new product information and coupons for same day use at participating stores. They then completed a questionnaire containing various questions. To assess arousal, dominance, and pleasure, we adapted and modified scales used in the previous studies in the context of location-based mobile shopping service, each of the five items from Mehrabian and Russell (1974). A total of 15 items were measured on a seven-point bipolar scale. To measure information relevancy, four items were borrowed from Mason et al. (1995). Intention to use LBMSS was captured using two items developed by Blackwell, and Miniard (1995) and one items developed by the authors. Data analyses were conducted using SPSS 19.0 and LISREL 8.72. A total of usable 335 data were obtained after deleting the incomplete responses, which results in a response rate of 11.20%. A little over half of the respondents were male (53.9%) and approximately 60% of respondents were married (57.4%). The mean age of the sample was 29.44 years with a range from 19 to 60 years. In terms of the ethnicity there were European Americans (54.5%), Hispanic American (5.3%), African-American (3.6%), and Asian American (2.9%), respectively. The respondents were highly educated; close to 62.5% of participants in the study reported holding a college degree or its equivalent and 14.5% of the participants had graduate degree. The sample represents all income categories: less than $24,999 (10.8%), $25,000-$49,999 (28.34%), $50,000-$74,999 (13.8%), and $75,000 or more (10.23%). The respondents of the study indicated that they were employed in many occupations. Responses came from all 42 states in the U.S. To identify the dimensions of research constructs, Exploratory Factor Analysis (EFA) using a varimax rotation was conducted. As indicated in table 1, these dimensions: arousal, dominance, relevancy, pleasure, and intention to use, suggested by the EFA, explained 82.29% of the total variance with factor loadings ranged from .74 to .89. As a next step, CFA was conducted to validate the dimensions that were identified from the exploratory factor analysis and to further refine the scale. Table 1 exhibits the results of measurement model analysis and revealed a chi-square of 202.13 with degree-of-freedom of 89 (p =.002), GFI of .93, AGFI = .89, CFI of .99, NFI of .98, which indicates of the evidence of a good model fit to the data (Bagozzi and Yi, 1998; Hair et al., 1998). As table 1 shows, reliability was estimated with Cronbach's alpha and composite reliability (CR) for all multi-item scales. All the values met evidence of satisfactory reliability in multi-item measure for alpha (>.91) and CR (>.80). In addition, we tested the convergent validity of the measure using average variance extracted (AVE) by following recommendations from Fornell and Larcker (1981). The AVE values for the model constructs ranged from .74 through .85, which are higher than the threshold suggested by Fornell and Larcker (1981). To examine discriminant validity of the measure, we again followed the recommendations from Fornell and Larcker (1981). The shared variances between constructs were smaller than the AVE of the research constructs and confirm discriminant validity of the measure. The causal model testing was conducted using LISREL 8.72 with a maximum-likelihood estimation method. Table 2 shows the results of the hypotheses testing. The results for the conceptual model revealed good overall fit for the proposed model. Chi-square was 342.00 (df = 92, p =.000), NFI was .97, NNFI was .97, GFI was .89, AGFI was .83, and RMSEA was .08. All paths in the proposed model received significant statistical support except H2. The paths from arousal to pleasure (H1: ${\ss}$=.70; t = 11.44), from information relevancy to intention to use (H3 ${\ss}$ =.12; t = 2.36), from information relevancy to pleasure (H4 ${\ss}$ =.15; t = 2.86), and pleasure to intention to use (H5: ${\ss}$=.54; t = 9.05) were significant. However, the path from dominance to pleasure was not supported. This study investigated consumer intention to use a location-based mobile shopping service (LBMSS) that integrates cognitive and affective responses. Information relevancy was integrated into pleasure-arousal-dominance (PAD) emotional state model as a conceptual framework. The results of the present study support previous studies indicating that emotional responses as well as cognitive responses have a strong impact on accepting new technology. The findings of this study suggest potential marketing strategies to mobile service developers and retailers who are considering the implementation of LBMSS. It would be rewarding to develop location-based mobile services that integrate information relevancy and which cause positive emotional responses.

  • PDF

Development of Yóukè Mining System with Yóukè's Travel Demand and Insight Based on Web Search Traffic Information (웹검색 트래픽 정보를 활용한 유커 인바운드 여행 수요 예측 모형 및 유커마이닝 시스템 개발)

  • Choi, Youji;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.3
    • /
    • pp.155-175
    • /
    • 2017
  • As social data become into the spotlight, mainstream web search engines provide data indicate how many people searched specific keyword: Web Search Traffic data. Web search traffic information is collection of each crowd that search for specific keyword. In a various area, web search traffic can be used as one of useful variables that represent the attention of common users on specific interests. A lot of studies uses web search traffic data to nowcast or forecast social phenomenon such as epidemic prediction, consumer pattern analysis, product life cycle, financial invest modeling and so on. Also web search traffic data have begun to be applied to predict tourist inbound. Proper demand prediction is needed because tourism is high value-added industry as increasing employment and foreign exchange. Among those tourists, especially Chinese tourists: Youke is continuously growing nowadays, Youke has been largest tourist inbound of Korea tourism for many years and tourism profits per one Youke as well. It is important that research into proper demand prediction approaches of Youke in both public and private sector. Accurate tourism demands prediction is important to efficient decision making in a limited resource. This study suggests improved model that reflects latest issue of society by presented the attention from group of individual. Trip abroad is generally high-involvement activity so that potential tourists likely deep into searching for information about their own trip. Web search traffic data presents tourists' attention in the process of preparation their journey instantaneous and dynamic way. So that this study attempted select key words that potential Chinese tourists likely searched out internet. Baidu-Chinese biggest web search engine that share over 80%- provides users with accessing to web search traffic data. Qualitative interview with potential tourists helps us to understand the information search behavior before a trip and identify the keywords for this study. Selected key words of web search traffic are categorized by how much directly related to "Korean Tourism" in a three levels. Classifying categories helps to find out which keyword can explain Youke inbound demands from close one to far one as distance of category. Web search traffic data of each key words gathered by web crawler developed to crawling web search data onto Baidu Index. Using automatically gathered variable data, linear model is designed by multiple regression analysis for suitable for operational application of decision and policy making because of easiness to explanation about variables' effective relationship. After regression linear models have composed, comparing with model composed traditional variables and model additional input web search traffic data variables to traditional model has conducted by significance and R squared. after comparing performance of models, final model is composed. Final regression model has improved explanation and advantage of real-time immediacy and convenience than traditional model. Furthermore, this study demonstrates system intuitively visualized to general use -Youke Mining solution has several functions of tourist decision making including embed final regression model. Youke Mining solution has algorithm based on data science and well-designed simple interface. In the end this research suggests three significant meanings on theoretical, practical and political aspects. Theoretically, Youke Mining system and the model in this research are the first step on the Youke inbound prediction using interactive and instant variable: web search traffic information represents tourists' attention while prepare their trip. Baidu web search traffic data has more than 80% of web search engine market. Practically, Baidu data could represent attention of the potential tourists who prepare their own tour as real-time. Finally, in political way, designed Chinese tourist demands prediction model based on web search traffic can be used to tourism decision making for efficient managing of resource and optimizing opportunity for successful policy.