• 제목/요약/키워드: prodrug

검색결과 116건 처리시간 0.031초

종양 표적 유전자 치료 (Tumor targeted gene therapy)

  • 강주현
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제40권5호
    • /
    • pp.237-242
    • /
    • 2006
  • Knowledge of molecular mechanisms governing malignant transformation brings new opportunities for therapeutic intervention against cancer using novel approaches. One of them is gene therapy based on the transfer of genetic material to an organism with the aim of correcting a disease. The application of gene therapy to the cancer treatment has led to the development of new experimental approaches such as suicidal gene therapy, inhibition of oncogenes and restoration of tumor-suppressor genes. Suicidal gene therapy is based on the expression in tumor cells of a gene encoding an enzyme that converts a prodrug into a toxic product. Representative suicidal genes are Herpes simplex virus type 1 thymidine kinase (HSV1-tk) and cytosine deaminase (CD). Especially, physicians and scientists of nuclear medicine field take an interest In suicidal gene therapy because they can monitor the location and magnitude, and duration of expression of HSV1-tk and CD by PET scanner.

Synthesis of Various Polymeric Prodrugs of Ibuprofen with PEG and Its Derivative as Polymeric Carriers

  • Lee, Chan-Woo
    • Macromolecular Research
    • /
    • 제12권1호
    • /
    • pp.63-70
    • /
    • 2004
  • We have synthesized various types of poly(ethylene glycol) (PEG)-ibuprofen conjugates by the nucleophilic substitution of bromo-terminated PEG with ibuprofen-Cs salt; PN (Pluronic) was also used in place of PEG. All the bromo-terminated PEGs and PN were obtained in high yield. Conversions of the terminal hydroxyl groups to bromo-termini were quantitative, as were the drug conjugation processes. The Ι$_1$$_3$values obtained from solutions of the ibuprofen-conjugated prodrugs are summarized in relation to those of ibuprofen in water and in aqueous solutions of the original PEG, PN, and several ordinary surfactants. We believe that the fully hydrophilic PEG is completely hydrated and forms no hydrophobic pocket by segment aggregation. These results indicate that the probe environment is significantly hydrophobic, particularly in the solution of prodrug PN, for which the ratio is similar to that obtained from typical micelles of surfactants. The results suggest, therefore, that the present synthetic method is very useful for preparing PEG-based prodrugs from pharmaceuticals having carboxyl functionalities.

Drug-Release Behavior of Polymeric Prodrugs of Ibuprofen with PEG and Its Derivatives as Polymeric Carriers

  • Lee, Chao-Woo
    • Macromolecular Research
    • /
    • 제12권1호
    • /
    • pp.71-77
    • /
    • 2004
  • We have synthesized various types of poly(ethylene glycol) (PEG)-ibuprofen conjugates by nucleophilic substitution of bromo-terminated PEG with ibuprofen-Cs salt. The conversion of the terminal hydroxyl groups to bromo-termini was quantitative, as was the drug conjugation process, which suggests that the present synthetic method is very useful for the preparation of PEG-based prodrugs from pharmaceuticals having carboxyl functionalities. The drug-release behavior of the prodrugs was examined in both phosphate buffer (PBS, pH 7.4) and rat plasma. From the drug-release behavior in PBS, we determined that each prodrug has high storage stability. The drug-release rate was observed to be much faster in rat plasma than in buffer solution as a result of the acceleration effect provided by enzymes present in the plasma. The drug-release rate in rat plasma depends on the degree of molecular aggregation of the prodrugs, which can be changed effectively by the nature of their spacer groups or by the use of Pluronic as the polymer carrier.

Cefazolin Butyrolactone Ester의 합성 및 생물약제학적 연구 (Synthesis and Biopharmaceutical Studies of Cefazolin Butyrolactone Ester, a Novel Prodrug of Cefazolin)

  • 이진환;조행남;최준식
    • 약학회지
    • /
    • 제47권5호
    • /
    • pp.331-338
    • /
    • 2003
  • A butyrolactone ester of cefazolin (CFZ-BTL) was synthesized by the esterification of cefazolin (CFZ) with $\alpha$-bromo-${\gamma}$-butyrolactone. The synthesis was confirmed by the spectroscopic analysis. The CFZ-BTL was more lipophilic than the CFZ when assessed by n-octanol/water partition coefficients at various pH. The CFZ-BTL itself did not show any antimicrobial activity in vitro, but after oral administration of CFZ-BTL to rabbits, exerted significant anti-microbial activity in serum samples when measured by the inhibion zone method in nutrient agar plates, due to conversion of CFZ-BTL to an active metabolite, probably CFZ, in the body. The CFZ-BTL was also converted into CFZ as confirmed by in vitro incubation study, with tissue homogenates (liver, blood and intestine) of rabbits. The liver showed the fastest conversion rate, probably via the hydrolysis mechanism. In vivo metabolism of CFZ-BTL to CFZ was also confirmed in vivo serum samples by HPLC. The oral bioavailability of CFZ-BTL in rabbits was 1.6-fold increased when compared to CFZ, resulting from followed by enhanced lipophilicity increased passive absorption in the intestine.

세포페라존피바로일옥시메칠에스텔의 경구 흡수 (Oral Absorption of Cefoperazone Pivaloyloxymethyl Ester)

  • 최영욱;박기배;최승호;김종갑
    • Journal of Pharmaceutical Investigation
    • /
    • 제18권4호
    • /
    • pp.197-201
    • /
    • 1988
  • Pivaloyloxymethyl ester of cefoperazone was synthesized by treating sodium cefoperazone with chloromethyl pivalate and its chemical structure was determined by spectroscopic trials. The pharmaceutical properties of the ester were investigated to assess its potential as a prodrug of cefo perazone. Cefoperazone pivaloyloxymethyl ester was microbiologically inactive itself in vitro, but hydrolyzed into the parent drug in vivo. After a single oral dose of each drug to rabbits, serum concentrations of cefoperazone were determined by high performance liquid chromatographic assay. The ester showed higher and more sustained blood level than cefoperazone. Therefore, the total area under the serum concentration-time curve of the derivative was 16.8 times larger than that of the parent drug.

  • PDF

Synthesis and properties of methylprednisolone-21sulfate sodiumas as a colon-specific prodrug of methylprednisolone

  • Kang, Hye-Sik;Kim, In-Ho;Kim, Young-Soo;Choi, Boh-Im;KIm, Hee-Jung;Kim, Young-Mi
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.177.3-177.3
    • /
    • 2003
  • Corticosteroids have been used most frequently for inflammatory bowel disease. To reduce side effects by the systemic absorption, colon-specific delivery is highly desirable. We expected that conversion of 21-hydroxyl in glucocorticoids into a sulfate ester sodium will greatly increase the hydrophilicity, which consequently restrict the gastrointestinal absorption. Once delivered to the colon, sulfate ester will be hydrolyzed by the sulfatase originated from microbes and release the parent compound, glucocorticoids. In this study, we prepared methylprednisolone 21-sulfate sodium (MPS) and investigated its suitability as a colon-specific prodrug on methylprednisolone (MP). (omitted)

  • PDF

Dexamethasone 21-sulfate sodium : A potential colon-specific prodrug of dexamethasone.

  • Kim, In-Ho;Jung, Yun-Jin;Doh, Min-Ju;Kong, Hye-Sik;Kim, Young-Mi
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.232.2-232.2
    • /
    • 2002
  • Corticosteroids have been used most frequently for inflammatory bowel disease. They are well absorbed and only a limited fraction of the dose is delivered to the inflammatory site in the colon. To reduce side effects by the systemic absorption. colon-specific delivery is highly desirable. We designed dexamethasone 21-sulfate sodium (DS) as a cOlon-specific prodrug of dexamethasone (D) expecting that it might be stable and non absorbable in the upper intestine and dissociate in the colon by the sulfatase, an enzyme solely found in the colon. (omitted)

  • PDF

Synthesis and in vitro/in vivo properties of prednisolone 21-sulfate sodium as a colon-specific prodrug of prednisolone

  • Doh, Min-Ju;Kim, In-Ho;Jung, Yun-Jin;Kong, Hye-Sik;Kim, Young-Mi
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.357.2-357.2
    • /
    • 2002
  • Corticosteroids have been used most frequently for inflammatory bowel disease.They are well absorbed and only a limited fraction of the dose is delivered to the inflammatory site in the colon. To reduce side effects by the systemic absorption. cOlon-specific delivery is highly desirable. We prepared prednisolone 21-sulfate sodium (PDS) and investigated its suitability as a colon-specific prodrug of prednisolone(PD). (omitted)

  • PDF