• Title/Summary/Keyword: procollagen type-1 synthesis

Search Result 52, Processing Time 0.016 seconds

Anti-wrinkle and Whitening Effects of Essential Oil from Abies koreana (Abies koreana 유래 정유의 항주름 및 미백 효과)

  • Song, Byeong-Wook;Song, Min-Jeong;Park, Mi-Jin;Choi, Don-Ha;Lee, Sung-Suk;Kim, Myungkil;Hwang, Ki-Chul;Kim, Il-Kwon
    • Journal of Life Science
    • /
    • v.28 no.5
    • /
    • pp.524-531
    • /
    • 2018
  • The essential oil from Abies koreana E.H. Wilson had been developed, however, its efficacy has not yet been studied especially in terms of skin care research. The aim of this study is to investigate the effects of Abies koreana extracts (AKE) on melanogenesis and wrinkle formation in B16F10 melanoma cells (B16F10) and human dermal fibroblast cell line (HDF). The essential oil was extracted by hydrodistillation method and purified by anhydrous sodium sulfate. At a concentration of $10^{-5}$-fold, viability in these cells had been defined by cytotoxicity assays. Anti-melanogenic effects on B16F10 were evaluated using tyrosinase inhibition assay, and real-time PCR for verifying gene expression of tyrosinase, tyrosinase related protein-1 and -2 (TRP-1 and -2). AKEs reduced about 5-fold of tyrosinase inhibitory activity compared to ${\alpha}$-melanocyte-stimulating hormone (${\alpha}$-MSH)-induced group and about 30% reduction compared to Arbutin induced group. The mRNA levels of three melanin-related factors were increased, separately. To investigate the effects of anti-wrinkle, procollagen type I c peptide synthesis assay (PIP) and Western blot were performed. At AKE-treated group, PIP was up-regulated and the expression of collagen type 1 and matrix metalloproteinase (MMP)-1 were improved. Furthermore, AKE presented anti-wrinkle effects by increasing UVB-inhibited collagen type 1 expression, and reducing UVB-induced MMP-1 production at $60mJ/cm^2$ of UVB radiation. Therefore, Abies koreana extracts has potentials as a safe and an effective skin ingredient for whitening and anti-wrinkle.

The Effect of Photomodulation in Human Dermal Fibroblasts (피부 섬유아세포에서 광자극의 효과)

  • Kim, Mi Na;Kwak, Taek Jong;Kang, Nae Gyu;Lee, Sang Hwa;Park, Sun Gyoo;Lee, Cheon Koo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.4
    • /
    • pp.325-331
    • /
    • 2015
  • Skin is exposed to sunlight or artificial indoor light on a daily. The reached solar light on the earth surface consist of 50% visible light and 45% infrared (IR) except for ultra violet (UV). The negative effects of UV including UVB and UVA have been steadily investigated within the last decades. However, little is known about the effects of visible or IR light. In this study, we irradiated human dermal fibroblasts using light emitting diode (LED) to investigate the optimal parameter for enhancing cell growth and collagen synthesis. We found that red of 630 nm and green of 520 nm enhance the cell proliferation, but irradiation with purple and blue light exerts toxic effects. To examine the response of irradiation time and light intensity on the fibroblasts, cells were exposed to red or green light with intensities from 0.05 to $0.75mW/cm^2$. Procollagen secretion was increased of 1.4 fold by 10 min irradiation, while 30 min treatment decreased the collagen synthesis of dermal fibroblasts. Treatment with red of $0.3mW/cm^2$ and green of 0.15 and $0.3mW/cm^2$ resulted in enhancement of collagen mRNA. Lastly, we investigated the combinatorial effect of red and green light on dermal fibroblasts. The sequential irradiation of red and green light is an efficient way for the purpose of the increase in the number of fibroblasts than single light treatment. On the other hand, the exposure of red light alone was more effective method for enhancing of collagen secretion. Our study showed that specific light parameters accelerated cell proliferation, gene expression and collagen secretion on human dermal fibroblasts. In conclusion, we demonstrate that light exposure with specific parameter has beneficial effects on the function of dermal fibroblasts, and suggests the possibility of its cosmetically and clinical application.