• Title/Summary/Keyword: processing shrinkage

Search Result 180, Processing Time 0.024 seconds

A study on the Processing Variables of Rapid Prototyping using Sheet Metal (금속박판을 이용한 쾌속조형의 공정변수에 관한 연구)

  • 이상찬;박정남;양동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.42-45
    • /
    • 2003
  • The purpose of this study is the development or the extensive Rapid Prototyping Technique. which can resolve the long-term manufacturing process, shrinkage and deformation occurring rapid prototyping technique. To begin with. the various specimens for tensile were manufactured on the basis of this modeling technology. Then, many kinds of the laminate pieces for the test were made by using the sheet metals lmm and 1.5mm thickness which is composed of the same ingredient. The tensile specimen were manufactured by changing the process variables, Such as electric current, pressure and resistance welding time for the Rapid Prototyping with metal sheet. And then by using the Taguchi method. The interrelation between the specimen and mechanical properties were determined and the system for the optimum process variable organized.

  • PDF

The Microhole Machining Characteristic According to Purity of the $Al_2O_3$ Ceramics ($Al_2O_3$ 세라믹의 순도별 미세구멍 가공특성)

  • 윤혁중;임순재;이동주;한흥삼
    • Laser Solutions
    • /
    • v.2 no.3
    • /
    • pp.32-41
    • /
    • 1999
  • This study is about Jig used in wiring when we make Probecard and Large Scale Intergrated Electronic Circuit. The most universal wiring method is molding with Bond. Polymer film is punched down and adhesives is applied after wiring. Due to shrinkage and modification many problems still have happened in the process of molding. To solve these problems, ceramic plate was introduced in the study. Using Laser, an experiment of microhole treatment on ceramic plate was proceeded. Laser energy, assistance gas, and special features by purity degree were analyzed with the 35W low capacity YAG-Laser. In the condition of energy 0.08J, frequency 20Hz and interval time 200$mutextrm{s}$, about 70${\mu}{\textrm}{m}$ microhole was adequate for the Probecard Jig. In the purity experiment of ceramic materials, high purity ceramic met with good result for microhole. But the price is too high. The shape and size of holes machined combustion gas $O_2$ were better than those in $N_2$ and Ar, the inert gas.

  • PDF

Polymer Replication Using Ultrasonic Vibration (초음파진동에너지를 이용한 고분자 마이크로구조물의 성형)

  • Yu, Hyun-Woo;Lee, Chi-Hoon;Ko, Jong-Soo;Shin, Bo-Sung;Rho, Chi-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.5
    • /
    • pp.419-423
    • /
    • 2008
  • A new polymer replication technology using ultrasonic vibration is proposed and demonstrated. A commercial ultrasonic welder has been used in this experiment. Two different types of nickel molds have been fabricated: pillar type and pore type microstructures. Polymethyl methacrlylate (PMMA) has been used as the replication material and the optimal molding time was 2 sec and 2.5 sec for pillar-type and pore-type micromolds, respectively. Compared with the conventional polymer micromolding techniques, the proposed ultrasonic micromolding technique has the shortest processing time. In addition, only contact area between micromold and polymer substrate is melted so that the thermal shrinkage can be minimized. The fabricated PMMA microstructures have been very accurately replicated without vacuum. The proposed ultrasonic molding technique is a good alternative for high volume production.

Applications of Semi-Solid Forming and its Problems (반용융 성형공정의 응용 및 문제점)

  • 강충길
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.06a
    • /
    • pp.135-147
    • /
    • 1997
  • The production of light metal parts using aluminum is mainly performed by die casting and squeeze casting, which directly fabricate the required shape from the liquid state. However, die casting is subject to defects such as shrinkage porosity and air trapped when molten metal enters the cavity, whilst squeeze casting also has defects due to turbulent flow in the die cavity. Both diecasting and sqeeze casting have inhomogeneous mechanical property in terms of dendritic structure during solidification. Active research has been carried out on semi-solid processing, rather than on conventional process methods such as die casting, which involve various problems. Therefore in this paper, to introduce the fundamental technology for d e design, in die casting and forging process with semi-solid materials, relationship between stress and strain of semi-solid materials, and for producing parts die design has been proposed as parameters of globulization of the microstructure and gate shape. The prevention of various defects to produce sound parts are also introduced.

  • PDF

Effect of Thermal Oxidation Coating on the Hot Forging Process of High Strength Ti-6Al-4V Bolt (Ti-6Al-4V 고강도 볼트의 성형성에 미치는 표면산화효과)

  • Kim, Jeoung-Han;Lee, Chae-Hoon;Hong, Jae-Keun;Kim, Jae-Ho;Yeom, Jong-Taek
    • Transactions of Materials Processing
    • /
    • v.18 no.3
    • /
    • pp.251-255
    • /
    • 2009
  • Since fastener bolt for airplane require high specific strength and corrosion resistance, Ti-6Al-4V alloy is widely used. However, the Ti-6Al-4V bolt is generally manufactured by cutting and rolling because of their poor workability. The aim of present work is to develop hot forming technology for high strength Ti-6Al-4V. Various heat-treatments were applied to specimen in order to increase hot-workability and prevent galling with die. Multiple forging were simulated with FE code to determine optimum process parameters including specimen temperature, strain rate, local strain, and thermal shrinkage. Forged samples were heat-treated again to increase their mechanical properties.

Contour based Algorithms for Generating 3D Models from CT Images (CT 이미지로부터 3차원 모델 생성을 위한 contour 기반 알고리즘)

  • 류재헌;김현수;이관행
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.174-182
    • /
    • 2003
  • Recently, medical imaging has taken interest on CAD based solution for anatomical part fabrication or finite element analysis of human body. In principle, contours representing object boundary are obtained through image processing techniques. Surface models are then approximated by a skinning method. For this, various methods should be applied to medical images and contours. The major bottleneck of the reconstruction is to remove shape inconsistency between contours and to generate the branching surface. In order to solve these problems, bi-directional smoothing and the composite contour generation method are proposed. Bi-directional smoothing has advantage of removing the shape inconsistency between contours and minimizing shrinkage effect with a large number of iterations. The composite contour by the proposed method ensures smooth transition in branching region.

Fabrication of Graded-Boundary Ni/steel Material by Electron Beam (전자빔에 의한 조성구배계면 Ni/Steel 합금재료의 개발)

  • 김병철;김도훈
    • Laser Solutions
    • /
    • v.2 no.2
    • /
    • pp.27-33
    • /
    • 1999
  • Electron beam was applied on the low carbon steel in order to fabricate Metal/Metal GBM(Graded Boundary Material). Ni sheet was placed on the steel substrate. The electron beam was irradiated on the surface and produced a homogeous alloyed layer. Sequential repetition of electron beam treatments for 4 times resulted in 8mm thick graded layer. To determine each layers property, optical microscopy, XRD, microhardness tester and EDS were used. The residual stress was measured by the low angle x-ray diffraction method. The graded boundary layer was stepwise profile, but Ni content incresed up to 80 wt% and Fe content decreased 20 wt% near surface. Each layers microstructure and hardness varied by different Fe/Ni composition. The compressive residual stress was induced by martensite transformation in the 1st and End layers and the shrinkage cracks were formed in graded layer by rapid cooling.

  • PDF

The Die Design for Semi-Solid Forging Process of Computer Simulation and Experimental Investigation of Filling Phenomenon (컴퓨터 시뮬레이션을 이용한 반용융 단조공정의 금형설계 및 충전현상의 실험적 검토)

  • 이동훈;강충길
    • Transactions of Materials Processing
    • /
    • v.10 no.5
    • /
    • pp.373-382
    • /
    • 2001
  • Die design by computer simulation has some advantages compared with the conventional method which has performed by designer's experiences and trials and errors. The die filling and solidification process of thixoforming process were simulated by MAGMAsoft/thixo module. Furthermore, the die design for thixoforming was performed with the various geometry shape. The effect of designed gate dimension on filling phenomenon was estimated by filling simulation. The calculated results was compared with experimental data. The free surface phenomenon obtained by experiment have good agreement with computer simulation results. The solidification effect much as prosity and shrinkage for designed semi-solid forging die had been predicted by computer simulation. The designed die for semi-solid forging had been applied to produce of the frame part which is used to airconditious system.

  • PDF

Effect of Processing Conditions of ITY on the Physical Properties of Compound Yarn for New Synthetic Fabrics(Ⅱ) (ITY 제조공정조건이 신합섬용 복합사의 물성에 미치는 영향(Ⅱ))

  • Han, Won Hui;Lee, Seung Hwan;Lee, Sang Jeong;No, Tae Cheol;Kim, Seung Jin
    • Textile Coloration and Finishing
    • /
    • v.13 no.2
    • /
    • pp.49-49
    • /
    • 2001
  • Interlace texturing is very useful method to make compound yarns for new synthetic fabrics. In this study, we make the compound yarns for peach skin fabric by interlace texturing method. This study surveys relationship between physical properties of interlace textured yarns and process conditions such as air pressure, yarn tension and take-up speed. Nip density, tensile properties and multi-step shrinkage of the various specimens were discussed with process conditions.

A Study on the Manufacturing of Stretch Silk Fabrics (I) - Effect of Processing Condition of Covered Yarn - (스트레치성 실크직물 제조에 관한 연구(I) -커버링사 공정 조건의 영향-)

  • Kwon Soon-Jueng;Jin Young-Gil
    • Textile Coloration and Finishing
    • /
    • v.18 no.2 s.87
    • /
    • pp.31-38
    • /
    • 2006
  • Silk fabrics are very popular and widely used because of their elegant appearance. However, silk fabrics generally have easy wrinkle, and do not stretch and deform permanently after machine washing. Then the stretched properties of silk fabrics are important for the application of industrial textile materials such as formal and sports wear. Thus, this research surveys the covering, weaving and degumming conditions for stretched silk fabrics. As a result, yarn breaking stress was reduced with increasing spindle speed, and the yarn twists were optimized under the covering condition of polyurethane/silk with PVA pretreatment. In addition, the shrinkage of the silk fabrics treated with star degumming process was reduced by continuous NaOH degumming process. The fabrics showed the fabric physical properties with optimum stretched properties and evenness surfaces.