• 제목/요약/키워드: processed pseudogene

검색결과 2건 처리시간 0.018초

High Correlation between Alu Elements and the Conversion of 3' UTR of mRNAs Processed Pseudogenes

  • An, Hyeong Jun;Na, Dokyun;Lee, Doheon;Lee, Kwang Hyung;Bhak, Jonghwa
    • Genomics & Informatics
    • /
    • 제2권2호
    • /
    • pp.86-91
    • /
    • 2004
  • Even though it represents $6-13\%$ of human genomic DNA, Alu sequences are rarely found in coding regions. When in exon region, over $80\%$ of them are found in 3' untranslated region (UTR). Pseudogenes are an important component of human genome. Their functions are not clearly known and the mechanism of how they are generated is still debatable. Both the Alu and Pseudogenes are important research problems in molecular biology. mRNA is thought to be a prime source of pseudogene and active research is going on its molecular mechanism. We report, for the first time, that mRNAs containing Alu repeats at 3' UTR has a significantly high correlation with processed pseudogenes, suggesting a possibility that Alu containing mRNAs have a high tendency to become processed pseudogenes. It is known that about $10\%$ of all human genes have been transposed. Transposed genes at 3' UTR without Alu repeat have about two processed pseudogenes per gene on average while we found with statistical significance that a transposed gene with Alu had over three processed Pseudogenes on average. Therefore, we propose Alu repeats as a new and important factor in the generation of pseudogenes.

Pseudogenes: Nuances and Nuisances in Molecular Diagnostics

  • Oh, Seung Hwan
    • Journal of Interdisciplinary Genomics
    • /
    • 제4권2호
    • /
    • pp.19-23
    • /
    • 2022
  • Pseudogenes are genomic regions that contain gene-like sequences that have a high similarity to the known genes but are nonfunctional. They are categorized into processed, unprocessed, and unitary pseudogenes. Unprocessed pseudogenes generated by duplications can be problematic in sequencing approaches in molecular diagnostics. We discuss the risk of misdiagnosis when investigating genes with pseudogenes of high homology, and describe a method for identifying these small and annoying differences between parent genes and pseudogenes, including parent gene-specific assay design.