• Title/Summary/Keyword: process temperature

Search Result 13,999, Processing Time 0.046 seconds

Study of Mold Internal Temperature Measurement Using PTCR for 3-D Glass Heat Forming (PTCR을 이용한 3-D Glass 열성형 금형의 내부 온도 측정에 관한 연구)

  • Lee, Ho-Soon;Ahn, Hae-Won;Kim, Si-Gyun;Kim, Gi-Man;Choi, Seong-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.6
    • /
    • pp.146-152
    • /
    • 2017
  • In order to make 3-D glass from 2-D glass for mobile device windows, a mold is used for heat forming. In this process, the temperature of the glass is very important. However, measuring the temperature of the glass inside the mold is very difficult owing to the mold structure and the high temperature. The purpose of this study is to measure the temperature inside the mold by using Process Temperature Control Rings (PTCR) and to compensate for temperature differences in the heat forming machine and inside the mold. The measuring method uses the ceramic material's shrinkage characteristics, which makes it possible to measure the temperature inside the mold at various locations.

The Effect of Gas Absorption Induced a Change of Glass Transition Temperature in Microcellular Foamed Plastics (초미세 발포 플라스틱의 유리전이온도를 변화시키는 가스 용해량의 영향)

  • Hwang, Yun-Dong;Cha, Seong-Un
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.5
    • /
    • pp.816-822
    • /
    • 2001
  • The thermoforming process is widely used in the plastics industry to produce articles for the packaging, automotive, domestic construction and leisure industries. The microcellular foaming process appeared at M.I.T. in 1980s to save a quantity of polymer materials and increase their mechanical properties. The glass transition temperature of polymer materials is one of many important process variables in appling the microcellular foaming process to the conventional thermoforming process. The goal of this research is to evaluate the relation between gas absorption and glass transition temperature in batch process using microcellular foaming process. The weight gain ratio of polymer materials has a conception of gas absorption. Polymers such as acrylonitrile-butadiene-styrene(ABS), polystyrene(PS) have been used in this experiment. According to conventional Chows model and Cha-Yoon model, it was estimated with real experimental result to predict a change of glass transition temperature as a function of the weight gain ratio of polymer materials in batch process to gain microcellular foamed plastic products.

Characteristics of Powder with Change of Temperature in Production of Tantalum Powder by MR-EMR Combination Process (MR-EMR 복합공정에 의한 탄탈륨분말의 제조시 온도변화에 따른 분말의 특성)

  • 배인성;윤재식;박형호;윤동주;이민호;설경원;김병일
    • Journal of Powder Materials
    • /
    • v.10 no.6
    • /
    • pp.395-405
    • /
    • 2003
  • In the conventional metallothermic reduction (MR) process for obtaining tantalum powder in batch-type operation. it is difficult to control morphology and location of deposits. On the other hand, a electronically mediated reaction (EMR) process is capable to overcome these difficulties and has a merit of continuous process, but it has the defect that the reduction yield is poor. MR-EMR combination process is a method that is able to overcome demerits of MR and EMR process. In this study, a MR-EMR combination process has been applied to the production of tantalum powder by sodium reduction of $K_2$TaF$_{7}$. The total charge passed through external circuit and average particle size (FSSS) were increased with increasing reduction temperature. The proportion of fine particle (-325 mesh) was decreased with increasing reduction temperature. The yield was improved from 65% to 74% with increasing reduction temperature. Considering the charge, impurities, morphology, particle size and yield, an reduction temperature of 1,123 K was found to be optimum temperature for MR-EMR combination process.

Isothermal Pass Schedule to Prevent Delamination in the Dry Wire Drawing Process (층간분리 방지를 위한 건식 등온 신선 패스 설계)

  • Ko, Dae-Cheol;Lee, Sang-Kon;Kim, Min-An;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.1 s.190
    • /
    • pp.57-63
    • /
    • 2007
  • Wire drawing process of the high carbon steel with a high speed is usually conducted at room temperature using a number of passes or reductions through consequently located dies. In the multi-pass drawing process, temperature rise in each pass affects the mechanical properties of the final product such as bending, torsion, and tensile property, etc. This temperature rise during the deformation promotes the occurrence of delamination, and deteriorates the torsion property and durability of wire. This study investigates the occurrence of delamination in the wire through the torsion test and the evaluation of wire temperature. The excessive wire temperature leads to the occurrence of the delamination. Based on the calculation of the wire temperature, a new pass schedule, which can prevent the delamination due to the excessive wire temperature rise, is designed through the isothermal pass schedule.

Development of Technique to Improve the Formability of the Rear Floor in Series Stamping Process (연속 스탬핑 작업시 리어 플로어 성형성 향상기술 개발)

  • 김동환;이정민;고영호;차해규;김병민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.25-28
    • /
    • 2004
  • A fracture was generated by change of clearance and deterioration of material properties on the sheet metal through temperature. This paper describes the results of a prediction about the temperature of the sheet metal during continuous stamping process, because the temperature increase of the sheet metal has a detrimental effect on formability. To analyze the temperature increase of the sheet metal during continuous stamping process, tensile and friction tests were performed from room temperature to 300$^{\circ}C$ at warm condition in this study. As temperature increase, tensile strength, elongation, strain hardening exponent and anisotropy coefficient for each specimens were decreased. On the other hand, friction coefficients were increased. From the FE-simulation results, temperature upward tendency was identified on dies and sheet metal. These observations are rationalized on the basis of the material properties, friction coefficient vs. temperature relationship for the sheet.

  • PDF

The Third National Congress on Fluids Engineering: Thermal design for the vertical type oven of soldering process. (반도체 공정용 수직로 설계를 위한 열유동 제어.)

  • Jeong, Won-Jung;Kwon, Hyun-Goo;Cho, Hyung-Hee
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.561-564
    • /
    • 2006
  • Because of new requirements related to the employment of SMT(Surface Mounting Technology) manufacturing and the diversity of components on high density PCB(printed circuit boards), Thermal control of the reflow process is required in oder to achieve acceptable yields and reliability of SMT assemblies. Accurate control of the temperature distribution during the reflow process is one of the major requirements, especially in lead-free assembly. This study has been performed for reflow process using the commercial CFD tool(Fluent) for predicting flow and temperature distributions. There was flow recirculation region that had a weak point in the temperature uniformity. Porous plate was installed to prevent and minimize flow recirculation region for acquiring uniform temperature in oven. This paper provided design concept from CFD results of the steady state temperature distribution and flow field inside a reflow oven.

  • PDF

Nanoparticle generation and growth in low temperature plasma process (저온 플라즈마 공정에서의 나노 미립자 생성 및 성장)

  • Kim, Dong-Joo;Kim, Kyo-Seon
    • Particle and aerosol research
    • /
    • v.5 no.3
    • /
    • pp.95-109
    • /
    • 2009
  • A low temperature plasma process has been widely used for semiconductor fabrication and can also be applied for the preparation of solar cell, MEMS or NEMS, but they are notorious in the point of particle contamination. The nano-sized particles can be generated in the low temperature plasma process and they can induce several serious defects on the performance and quality of microelectronic devices and also on the cost of final products. For the preparation of high quality thin films of high efficiency by the low temperature plasma process, it is desirable to increase the deposition rate of thin films with reducing the particle contamination in the plasmas. In this paper, we introduced the studies on the generation and growth of nanoparticles in the low temperature plasmas and tried to introduce the recent interesting studies on nanoparticle generation in the plasma reactors.

  • PDF

An experimental study of heat transfer with $Na_4P_2O_7{\cdot}10H_2O$ as P.C.M. ($Na_4P_2O_7{\cdot}10H_2O$의 축열방열시 열전달 특성에 관한 실험적 연구)

  • Lee, C.M.;Yim, C.S.
    • Solar Energy
    • /
    • v.9 no.1
    • /
    • pp.70-77
    • /
    • 1989
  • Sodium pyrophosphate that melting point is $79-80^{\circ}C$ have been Studied on heat storage and heat discharge. In heat storage process, sodium pyrophosphate was kept up initial temperature $50^{\circ}C,\;60^{\circ}C,\;70^{\circ}C$ which melt by heated water at temperature $85^{\circ}C,\;90^{\circ}C,\;95^{\circ}C$. In heat discharge process, initial temperature of sodium pyrophosphate was maintained at temperature $85^{\circ}C,\;90^{\circ}C,\;95^{\circ}C$ which varied cooling temperature $50^{\circ}C,\;60^{\circ}C,\;70^{\circ}C$. The experiment has been reached conclusions as follows. 1) Heat transfer properties of phase change material is controlled by conduction during heating and cooling process. 2) The temperature increased rapidly at initial stage and transient region increase slowly because of characteristic of latent heat. 3) The lower cooling water temperature is the less the time that get to thermal equivalent state take during discharge process. 4) The higher cooling water temperature is the less temperature difference between top and bottom in P.C.M during discharge process.

  • PDF

A Study on the Fine Wire Drawing Process Design to Improve the Productivity (생산성 향상을 위한 세선 인발공정설계에 관한 연구)

  • Lee, S.K.;Kim, B.M.;Kim, M.A.
    • Transactions of Materials Processing
    • /
    • v.17 no.4
    • /
    • pp.257-262
    • /
    • 2008
  • The control of wire temperature is very important in the fine wire drawing process. The wire speed should be increased, and the wire temperature should be dropped as much as possible. Up to now, the process design of wire drawing process depends on the experiences of experts. In this study, a wire drawing process design method was proposed to increase the productivity. The proposed method of this study includes the pass schedule and the design of a multi pass wire drawing machine. A pass schedule was performed based on the calculation of the wire temperature. Also, a new multi pass wire drawing machine was manufactured to apply the designed pass schedule. Through the wire drawing experiment, the effectiveness of the proposed process design method was evaluated. The final drawing speed was increased from 1,100m/min to 2,000m/min without deterioration of final drawn wire.

A Computing Method of a Process Coefficient in Prediction Model of Plate Temperature using Neural Network (신경망을 이용한 판온예측모델내 공정상수 설정 방법)

  • Kim, Tae-Eun;Lee, Haiyoung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.11
    • /
    • pp.51-57
    • /
    • 2014
  • This paper presents an algorithmic type computing technique of process coefficient in predicting model of temperature for reheating furnace and also suggests a design method of neural network model to find an adequate value of process coefficient for arbitrary operating conditions including test conditons. The proposed neural network use furnace temperature, line speed and slab information as input variables, and process coefficient is output variable. Reasonable process coefficients can be obtained by an algorithmic procedure proposed in this paper using process data gathered at test conditons. Also, neural network model output equal process coefficient under same input conditions. This means that adquate process coefficients can be found by only computing neural network model without additive test even if operating conditions vary.