• 제목/요약/키워드: process pump

검색결과 672건 처리시간 0.029초

재생펌프 소음특성의 측정 및 해석에 관한 연구 (The measurement and analysis of Regenerative Pump Noise)

  • 김태훈;서영수;정의봉;정호경
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.1067-1071
    • /
    • 2004
  • In this paper, the characteristic of the regenerative pump is reviewed by the measurement and the analysis. The dominant noise sources are harmonic components of the rotating impeller frequency. The acoustic characteristics and the noise source position at the dump are identified. In order to reduce the high-level peak noise, the interior flow of the pump chamber is analyzed by CFD (Computational Fluid Dynamics). Acoustic pressure is calculated with Ffowscs Williams and Hawkings equation. As the result of the analysis new design of the pump chamber is recommended. The recommended pump is compared with original pump by evaluating the RMS value of a interior static pressure and the sound pressure level. The new pump chamber recommended by analysis results is proved by a process of the measurement. The overall SPL of a recommended pump is reduced about 3 dBA.

  • PDF

엔진구동 지열 열펌프의 성능 분석(II) - 소형 증기압축식 열펌프의 성능 분석 - (Performance Analysis of an Earth Coupled Heat Pump System Operated by an Engine(II) - Performance Analysis of a Vapour Compression type Compact Heat Pump -)

  • 김영복;송대빈;손재길
    • Journal of Biosystems Engineering
    • /
    • 제24권6호
    • /
    • pp.501-512
    • /
    • 1999
  • In this study, the coefficient of performance of a vapour compression heat pump system was analyzed for the evaluation of the heat pump performance. A water-to-air heat pump was assembled and tested by changing the level of the compressor driving speed and the air mass flow rate during air heating process. The coefficient of performance for air heating was 2.6~3.8 and that for water cooling was 1.0~1.4. The coefficient of performance was not depending on the levels of the compressor driving speed or levels of the air mass flow rate, but on the temperature of the air and water. The coefficient of performance for air heating increased by about 0.2 with the water temperature increasing by 1$^{\circ}C$.

  • PDF

엔진 오일펌프계 소음.진동 최적화 (NVH Optimization of the Eng. Oil Pump System)

  • 신달흔;배성윤;유동규;강구태;권오영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.923-928
    • /
    • 2007
  • The rattle noise originated from the oil-pump system was issued in developing an engine. In this paper, the major concerning factors for rattle noise are analyzed and the NVH developing process is summarized. The main factors are the tip clearance of inner/outer rotor, the clearance between oil pump housing and rotor guide and the rotor mass. Also, the optimization for oil-pump rotor whine noise is performed. The main factors of the rotor whine are the profile of the rotor, the oil pressure and the shape of oil route. This paper will present the design guidelines of the engine oil-pump system.

  • PDF

슬러리 펌프의 신뢰성 향상 (Reliability Evaluation of a Slurry Pump)

  • 정동수
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제16권4호
    • /
    • pp.263-271
    • /
    • 2016
  • Purpose: A slurry pump for flue gas desulfurization system performs a role that discharges the slurry of a plaster shape in a thermal power plant. Since a slurry pump transfers the slurry by the centrifugal force, it has the friction wear in the impeller and liner because of the slurry. Methods: In this study, failure analysis and test evaluation on the slurry pump have been proposed and the process that reliability of the product improves through design improvement has been presented. And failure cause of typical failure case has been investigated and improvement design has been presented. Results: Reliability improvement is established by analysis of the test results of before and after acceleration test. Conclusion: This study can be provided to improve the product reliability through failure analysis of a slurry pump.

사판식 피스톤 펌프의 구조적 거동 해석에 관한 연구 (A Study on the Analysis of Structural Behaviors the Swash-Type Piston Pump)

  • 김정화;신미정
    • 한국산업융합학회 논문집
    • /
    • 제19권3호
    • /
    • pp.125-132
    • /
    • 2016
  • The swash-type piston pump is a device that discharges as much volume of hydraulic oil generated as it moves the ramp by controlling the angle of the swash. This pump is suitable for high-speed high pressurization, and due to its useful characteristic being the variable capacity-type, it is used as a main pump for heavy equipment in various fields such as defense, shipbuilding, construction, etc. This study intends to obtain optimal design values by conducting a structural analysis in order to verify its reliability during the design process of the newly developed swash-type piston pump.

열펌프를 이용한 건조시스템의 성능비교 연구 (A Comparative Study of Heat Pump Drying System Performances)

  • 김석광;이흥주
    • 대한기계학회논문집
    • /
    • 제16권8호
    • /
    • pp.1595-1602
    • /
    • 1992
  • An energy efficient drying system, utilizing a heat pump to recover the wasted heat with high efficiency is proposed. In conventional drying systems, over-heating occurs through a condenser as the same amount of air is provided into the evaportator and the condenser. In order to prevent the over-heating, part of the outlet air from the drying chamber must be bypassed to increase the rate of vaporization in the drying chamber without release of the heat from the system. Since a part of the heat in the condenser is used to heat the air during the drying process of the proposed system, a high drying efficiency and low SPC(Specific Power Consumption) could be obtained, Comparing the performances between the proposed heat pump and a conventional one, it was found that the drying efficiency of the proposed heat pump is higher than that of the conventional heat pump by an amount of 7-25%.

열펌프 건조기의 기본 설계를 위한 건조 성능 해석 (Drying Performance Simulation for the Basic Design of a Heat Pump Dryer)

  • 이공훈;김욱중
    • 대한기계학회논문집B
    • /
    • 제31권10호
    • /
    • pp.860-867
    • /
    • 2007
  • Heat pump drying has a great potential for energy saving due to its high energy efficiency in comparison with conventional air drying. In the present study, the performance simulation for the basic design of a heat pump dryer has been carried out. The simulation includes one-stage heat pump cycle, simple drying process using the drying efficiency. As an example, the heat pump cycle with Refrigerant 134a has been investigated. For the operating conditions such as the average temperature of the condenser, the heat rate released in the condenser, the flow rate of drying air, and drying efficiency, the simulation has been carried out to figure out the performance of the dryer. The parameters considered in the design of the dryer are COP, MER, SMER, the rate of dehumidification, the temperature and humidity of drying air and those parameters are compared for different conditions after carrying out the simulation.

AJAX를 이용한 소방엔진펌프의 모니터링과 제어 시스템 구현 (Implementation of Monitoring and Control System for Fire Engine Pump using the AJAX)

  • 양오;이헌국
    • 반도체디스플레이기술학회지
    • /
    • 제15권3호
    • /
    • pp.40-45
    • /
    • 2016
  • In this paper, the fire engine pump is controlled and monitored by the AJAX (Asynchronous Javascript and Xml) in the web server. The embedded system with built-in system having a processor and a memory of high performance occurs many problems in transmitting the large amount of data in real time through the web server. The AJAX is different from HTML (Hyper Text Makeup Language) with java script technology and can make RIA (Rich Internet Application). It process the necessary data by using asynchronous and it take advantage of usefulness, accessibility, a fast response time. Using AJAX can build up web server with real time and monitoring that fire engine pump status, check processing pump memory in the event of fire, also remotely monitors can do. The web server system can control the fire engine pump as like the black box. The experimental results show the effectiveness and commercialize possibility.

Advances on heat pump applications for electric vehicles

  • Bayram, Halil;Sevilgen, Gokhan;Kilic, Muhsin
    • Advances in Automotive Engineering
    • /
    • 제1권1호
    • /
    • pp.79-104
    • /
    • 2018
  • A detailed literature review is presented for the applications of the heat pump technologies on the electric vehicles Heating, Ventilation and Air Conditioning (HVAC) system. Due to legal regulations, automotive manufacturers have to produce more efficient and low carbon emission vehicles. Electric vehicles can be provided these requirements but the battery technologies and energy managements systems are still developing considering battery life and vehicle range. On the other hand, energy consumption for HVAC units has an important role on the energy management of these vehicles. Moreover, the energy requirement of HVAC processes for different environmental conditions are significantly affect the total energy consumption of these vehicles. For the heating process, the coolant of internal combustion (IC) engine can be utilized but in electric vehicles, we have not got any adequate waste heat source for this process. The heat pump technology is one of the alternative choices for the industry due to having high coefficient of performance (COP), but these systems have some disadvantages which can be improved with the other technologies. In this study, a literature review is performed considering alternative refrigerants, performance characteristics of different heat pump systems for electric vehicles and thermal management systems of electric vehicles.

저 맥동 연동 펌프 기반 플로우 스루 셀 방식 용출 장치 설계 (Design of Dissolution Apparatus for the Flow-through Cell Method Based on the Low Pulsation Peristaltic Pump)

  • 조준성;정석;박상범
    • 한국기계가공학회지
    • /
    • 제19권1호
    • /
    • pp.11-18
    • /
    • 2020
  • The emergence of the flow-through cell (FTC) method has made up for the limitations of previous dissolution test methods, but the high cost of the FTC dissolution devices have seriously hindered the progression of research and application of the FTC. This new design uses a peristaltic pump to simulate the sinusoidal flow rate of a piston pump. The flow profile of each peristaltic pump was sinusoidal with a pulsation of 120 ± 1 pulses per minute, and the flow rate ranged from 1.0 - 36.0 mL/min. The flow control of each channel was adjusted independently so the flow errors of the seven channels were close to 2%. The structure of the system was simplified, and the cost was reduced through manual sampling and immersing the FTC in a water bath. The dissolution rate of the theophylline and aminophylline films was determined, and good experimental results were obtained.