• Title/Summary/Keyword: process efficiency

Search Result 10,101, Processing Time 0.046 seconds

Solar Cell Efficiency Improvement using a Pre-deposition Temperature Optimization in The Solar Cell Doping Process (도핑 공정에서의 Pre-deposition 온도 최적화를 이용한 Solar Cell 효율 개선)

  • Choi, Sung-Jin;Yoo, Jin-Su;Yoo, Kwon-Jong;Han, Kyu-Min;Kwon, Jun-Young;Lee, Hi-Deok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.244-244
    • /
    • 2010
  • Doping process of crystalline silicon solar cell process is very important which is as influential on efficiency of solar. Doping process consists of pre -deposition and diffusion. Each of these processes is important in the process temperature and process time. Through these process conditions variable, p-n junction depth can be controled to low and high. In this paper, we studied a optimized doping pre-deposition temperature for high solar cell efficiency. Using a $200{\mu}m$ thickness multi-crystalline silicon wafer, fixed conditions are texture condition, sheet resistance($50\;{\Omega}/sq$), ARC thickness(80nm), metal formation condition and edge isolation condition. The three variable conditions of pre-deposition temperature are $790^{\circ}C$, $805^{\circ}C$ and $820^{\circ}C$. In the $790^{\circ}C$ pre-deposition temperature, we achieved a best solar cell efficiency of 16.2%. Through this experiment result, we find a high efficiency condition in a low pre-deposition temperature than the high pre-deposition temperature. We optimized a pre-deposition temperature for high solar cell efficiency.

  • PDF

Production Efficiency Evaluation Considering Various Process Parameters (다양한 공정변수를 포함한 생산품의 효율성 평가방법에 관한 연구)

  • Kim, Chu;Cho, YongJu;Seo, Yoonho;Jo, Hyunjae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.6
    • /
    • pp.921-930
    • /
    • 2013
  • From an economic perspective, an enterprise's business activity depends on the efficient use of corporate resources for generating profits. However, on the enterprise side, it is difficult to measure and evaluate the effective use of each resource. This paper suggests an alternative for eliminating process inefficiencies in the consolidation of competitive power in auto parts manufacturing company A. Multitudinous process variables from company A's raw materials-to-shipment process are configured as input resources, and a Data Envelopment Analysis(DEA) is carried out to determine economical benefit of said resources' operation, as well as how products are manufactured. The DEA model offers a non-parametric approach to measuring relative efficiency using input and output factors. Furthermore, AHP is used for logically deciding the importance of each evaluation factor. In general, DEA models have been used for measuring efficiency of the service and public sectors. However, this study focused on measuring the efficiency of SMEs production lines.

Process-Variation-Adaptive Charge Pump Circuit using NEM (Nano-Electro-Mechanical) Relays for Low Power Consumption and High Power Efficiency

  • Byeon, Sangdon;Shin, Sanghak;Song, Jae-Sang;Truong, Son Ngoc;Mo, Hyun-Sun;Lee, Seongsoo;Min, Kyeong-Sik
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.5
    • /
    • pp.563-569
    • /
    • 2015
  • For some low-frequency applications such as power-related circuits, NEM relays have been known to show better performance than MOSFETs. For example, in a step-down charge pump circuit, the NEM relays showed much smaller layout area and better energy efficiency than MOSFETs. However, severe process variations of NEM relays hinder them from being widely used in various low-frequency applications. To mitigate the process-variation problems of NEM relays, in this paper, a new NEM-relay charge pump circuit with the self-adjustment is proposed. By self-adjusting a pulse amplitude voltage according to process variations, the power consumption can be saved by 4.6%, compared to the conventional scheme without the self-adjustment. This power saving can also be helpful in improving the power efficiency of the proposed scheme. From the circuit simulation of NEM-relay charge pump circuit, the efficiency of the proposed scheme is improved better by 4.1% than the conventional.

Optimization of injection molding process for car fender in consideration of energy efficiency and product quality

  • Park, Hong Seok;Nguyen, Trung Thanh
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.4
    • /
    • pp.256-265
    • /
    • 2014
  • Energy efficiency is an essential consideration in sustainable manufacturing. This study presents the car fender-based injection molding process optimization that aims to resolve the trade-off between energy consumption and product quality at the same time in which process parameters are optimized variables. The process is specially optimized by applying response surface methodology and using non-dominated sorting genetic algorithm II (NSGA II) in order to resolve multi-object optimization problems. To reduce computational cost and time in the problem-solving procedure, the combination of CAE-integration tools is employed. Based on the Pareto diagram, an appropriate solution is derived out to obtain optimal parameters. The optimization results show that the proposed approach can help effectively engineers in identifying optimal process parameters and achieving competitive advantages of energy consumption and product quality. In addition, the engineering analysis that can be employed to conduct holistic optimization of the injection molding process in order to increase energy efficiency and product quality was also mentioned in this paper.

Removal characteristics of surfactant by ozone and biological activated carbon (오존과 생물활성탄에 의한 합성세제 제거 특성 연구)

  • Ku, Suk Hyen;Kwon, Jin Hyoung;Lee, Jae In;Lim, Jin Kyung;Kim, Dong Youn
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.1
    • /
    • pp.99-107
    • /
    • 2000
  • In this article, the removal of surfactant by ozone and BAC was studied. Batch and pilot tests were carried out for these studies. In batch tests, efficiency of ozone oxidation process was evaluated for LAS(Linear Alkylbenzen Sulfonate) and SLS(Sodium Lauryl Sulfate) removal. Under oxidant conditions, the removal of LAS was more effective than that of SLS. The removal of surfactant was more enhanced with increasing pH in oxidant systems. Pilot tests are carried out with BAC single process and ozone oxidation/BAC combined process. The removal of LAS was more effective in ozone oxidation/BAC combined process than BAC single process about 10-20%. In the case of SLS, the efficiency of BAC single process was similar to that of ozone oxidation BAC combined process. According to temperature, the removal efficiency of SLS changed from 70% to 95% and initial concentration of surfactant had no effects on removal efficiency of SLC under applied temperature above $15^{\circ}C$.

  • PDF

A study on the grinding machining of engineering ceramics with high efficiency using "In-process dressing" (연속 드레싱 공정을 도입한 엔지니어링 세라믹스의 고능률적 연삭 가공에 관한 연구)

  • 강재훈;이재경
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.130-143
    • /
    • 1993
  • Engineering ceramics have some excellent properties as the material for the mechanical components. It is, however, very difficult to grind ceramics with high efficiency because of their high strength, hardness and brittleness. In this paper, experiments are carried out to obtain the effect of "In-process dressing" to grind the Engineering ceramics with high efficiency. To save running time for dressing process and obtain restraint effect of diamond grain wear, "In-process dressing" system using WA stick type honing stone is proposed. Representative Engineering ceramics, such as AI$_{2}$O$_{3}$, Si$_{3}$N$_{4}$, are ground with diamond wheel. Also bending strength test is carried out to check upward tendancy of mecahnical properties as the result of machining defact restraint through the grinding machining method using "In-process dressing" process. Some results obtained in this study provide useful information to attain the high efficiency grinding and the high mechanical properties of Engineering ceramics.rties of Engineering ceramics.

  • PDF

Optimization of the firing process condition for high efficiency solar cells on single-crystalline silicon (고효율 Solar Cell 제조를 위한 Firing 공정 조건의 최적화)

  • Jeong, Se-Won;Lee, Seong-Jun;Hong, Sang-Jin;Han, Seung-Su
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2006.10a
    • /
    • pp.4-5
    • /
    • 2006
  • This paper represents modeling and optimization techniques for solar cell process on single-crystalline float zone (FZ) wafers with high efficiency; There were the four significant processes : i)emitter formation by diffusion, anti-reflection-coating (ARC) with silicon nitride using plasma-enhanced chemical vapor deposition (PECVD); iii)screen-printing for front and back metallization; and iv)contact formation by firing. In order to increase the performance of solar cells, the contact formation process is modeled and optimized. This paper utilizes the design of experiments (DOE) in contact formation to reduce process time, fabrication costs. The experiments were designed by using central composite design which is composed of $2^4$ factorial design augmented by 8 axial points with three center points. After contact formation process, the efficiency of the solar cell is modeled using neural networks. This model is used to analyse the characteristics of the process, and to optimize the process condition using genetic algorithms (GA). Finally, find optimal recipe for solar cell efficiency.

  • PDF

Washing Efficiency of Steam Jet Washing Process (스팀분사 세탁시스템의 세탁효율 분석)

  • Seo, Moon-Hwo;Lee, Ah-Jin;Jung, Soo-Hyun;Yang, Seung-Do;Kim, Hyung-Sup;Koh, Joon-Seok
    • Textile Coloration and Finishing
    • /
    • v.18 no.6 s.91
    • /
    • pp.69-79
    • /
    • 2006
  • The washing characteristics of steam jet heating process have been compared with other washing processes, such as low temperature process(standard process, below $40^{\circ}C$) and high temperature process(boiling process, up to $95^{\circ}C$) with the standard soil fabric, EPMA 105. Steam jet heating process showed almost the same washing efficiency as high maximum temperature process for pig's blood and wine. This result can be explained with the higher surface temperature of washing materials in steam jet process compared with direct boiling process. In terms of the energy and water consumption, the steam jet washing process showed significant savings compared with direct boiling type washing process.

The Study on Evaluating Performances of Lab Sacle-Advanced $A_{2}O$ with Changing System Using Biofilm Process (생물막 담체를 이용한 실험실 규모 $A_{2}O$공법의 시스템 변형에 따른 고도처리 성능 평가에 관한 연구)

  • Kim, Min-Sik;Kang, Gu-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.2
    • /
    • pp.209-218
    • /
    • 2012
  • Recently, as reinforced water quality standards for wastewater has been announced, more efficient and more powerful wastewater treatment processes are required rather than the existing activated sludge process. In order to meet this demands, we evaluate Task 1-4 about lab scale $A_{2}O$ process using biofilm media. Task 1, 2, and 3 use 'Module A' which has 4 partitions (Anoxic/Anerobic/Oxic/Oxic). Task 4 uses 'Module B' which has 2 partitions including a denitrification reactor with an Inclined plug flow reactor (IPFR) and a nitrification reactor with biofilm media. The denitrification reactor of Module B is designed to be upward flow using IPFR. The result of evaluating at each Task has shown that attached growth system has better capacity of removal efficiency for organic matter and nitrogen with the exception of phosphorus. Task 4 which has the most outstanding removal efficiency has 90.5% of $BOD_{5}$ removal efficiency, 97.8% of ${NH_4}^{+}-N$ removal efficiency, 65% of T-N removal efficiency and 92% of T-P removal efficiency with additional chemical phosphorus removal system operated at HRT 9hr, Qi:Qir 1:2, and BOD/T-N ratio 2.7.

Proposal and Analysis of DMR Process with Hydrofluorocarbon Refrigerants (Hydrofluorocarbon 냉매를 적용한 DMR 공정 제안 및 분석)

  • Park, Jinwoo;Lee, Inkyu;Shin, Jihyun;Moon, Il
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.1
    • /
    • pp.62-67
    • /
    • 2016
  • Natural gas, one of the cleanest fossil fuel, is liquefied to reduce its volume for the long distance transportation. Small size floating liquefied natural gas plant has small area that safe issue is highly considered. However, Dual Mixed Refrigerants (DMR) process has fire potential by using flammable refrigerants and N2 Expander process has low compressed energy efficiency which has high inherent process safety. Therefore, safe process with high compressed energy efficiency is constantly needed. This study suggested an alternative refrigerants to existing DMR process by using Hydrofluorocarbon which has high safety due to its non-flammable properties. As a result, it showed 34.8% lower compressed energy efficiency than DMR process that contains fire potential whereas 42.6% improved compressed energy efficiency than Single N2 Expander process. In conclusion, this research proposed safe process for small size floating liquefied natural gas plant while having high efficiency.