• Title/Summary/Keyword: process byproduct

Search Result 119, Processing Time 0.024 seconds

Encapsulation of Semiconductor Gas Sensors with Gas Barrier Films for USN Application

  • Lee, Hyung-Kun;Yang, Woo Seok;Choi, Nak-Jin;Moon, Seung Eon
    • ETRI Journal
    • /
    • v.34 no.5
    • /
    • pp.713-718
    • /
    • 2012
  • Sensor nodes in ubiquitous sensor networks require autonomous replacement of deteriorated gas sensors with reserved sensors, which has led us to develop an encapsulation technique to avoid poisoning the reserved sensors and an autonomous activation technique to replace a deteriorated sensor with a reserved sensor. Encapsulations of $In_2O_3$ nanoparticles with poly(ethylene-co-vinyl alcohol) (EVOH) or polyvinylidene difluoride (PVDF) as gas barrier layers are reported. The EVOH or PVDF films are used for an encapsulation of $In_2O_3$ as a sensing material and are effective in blocking $In_2O_3$ from contacting formaldehyde (HCHO) gas. The activation process of $In_2O_3$ by removing the EVOH through heating is effective. However, the thermal decomposition of the PVDF affects the property of the $In_2O_3$ in terms of the gas reactivity. The response of the sensor to HCHO gas after removing the EVOH is 26%, which is not significantly different with the response of 28% in a reference sample that was not treated at all. We believe that the selection of gas barrier materials for the encapsulation and activation of $In_2O_3$ should be considered because of the ill effect the byproduct of thermal decomposition has on the sensing materials and other thermal properties of the barrier materials.

A Study on the Optimal Preparation Condition of Fungicide Propineb (살균제 Propineb의 제조 공정 최적화 연구)

  • Shin, Hee-Kwan;Woo, Je-Wan
    • The Korean Journal of Pesticide Science
    • /
    • v.8 no.4
    • /
    • pp.272-279
    • /
    • 2004
  • The process for the preparation of fungicide propineb starting with 1,2-diaminopropane was studied on the optimal condition base. Side reaction producing toxic material 1,2-propylenethiourea could be ieduced effectively by using phase transfer catalyst and the product was noticed to show a great improvement in yield and purity. Especially when the phase transfer catalyst tetraphenylphosphonium bromide is used, the yield and the purity of the product were found to be best with up to 95 and 96% respectively and the byproduct content was shown within 1.7%. Also, the contents of wetting agent AES and dispersing agent APS were optimally chosen $3.1\sim4.0%$ and $4.0%\sim5.0%$ respectively for the improvement of suspensibility and wettability of Propineb WP.

Effect of Dietary Protein on the Serum Xanthine Oxidase Activity in Methanethiol-treated Rats (식이성 단백질 함량이 Methanethiol 투여한 흰쥐의 혈청 Xanthine Oxidase 활성에 미치는 영향)

  • 윤종국;전태원;임영숙
    • Journal of Environmental Health Sciences
    • /
    • v.19 no.1
    • /
    • pp.66-70
    • /
    • 1993
  • Introduction : Methanethiol is a toxicant that is a byproduct in the industrial process (oil refinery), and it is produced in vivo from methionine via transamination in case of its overintake. And it also can be generated by the action of mucosal thiol Smethyltransferase on hydrogen sulfite which is formed by anaerobic bacteria in the intestinal tract. The toxicity of methanethiol has often been suggested as one of endogenous factors involved in the pathogenesis of hepatic encephalopathy. Furthermore, methanethiol could cause the membrane damage and inhibition of some membrane protective enzymes.

  • PDF

Improved Bioethanol Production Using Activated Carbon-treated Acid Hydrolysate from Corn Hull in Pachysolen tannophilus

  • Seo, Hyeon-Beom;Kim, Seung-Seop;Lee, Hyeon-Yong;Jung, Kyung-Hwan
    • Mycobiology
    • /
    • v.37 no.2
    • /
    • pp.133-140
    • /
    • 2009
  • To optimally convert corn hull, a byproduct from corn processing, into bioethanol using Pachysolen tannophlius, we investigated the optimal conditions for hydrolysis and removal of toxic substances in the hydrolysate via activated carbon treatment as well as the effects of this detoxification process on the kinetic parameters of bioethanol production. Maximum monosaccharide concentrations were obtained in hydrolysates in which 20 g of corn hull was hydrolyzed in 4% (v/v) $H_2SO_4$. Activated carbon treatment removed 92.3% of phenolic compounds from the hydrolysate. When untreated hydrolysate was used, the monosaccharides were not completely consumed, even at 480 h of culture. When activated carbon.treated hydrolysate was used, the monosaccharides were mostly consumed at 192 h of culture. In particular, when activated carbon-treated hydrolysate was used, bioethanol productivity (P) and specific bioethanol production rate ($Q_p$) were 2.4 times and 3.4 times greater, respectively, compared to untreated hydrolysate. This was due to sustained bioethanol production during the period of xylose/arabinose utilization, which occurred only when activated carbon-treated hydrolysate was used.

Strength Characteristic according to the Water Curing Temperature of the Inorganic Binder Mixed PVA Fiber (PVA섬유혼입 무기결합재의 수중양생온도에 따른 강도특성)

  • Lee, Jin-Woo;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.194-195
    • /
    • 2013
  • Recently, it is the tendency that the CO2 gas generated in the manufacturing process is increased every year in case of the portland cement used in the most of constructions and civil engineering field. The method that uses the mineral admixtures as the cement substitute material in order to be more serious and as much as it occupies 7% of the global CO2 gas outlet amount such as 1 ton produces the cement and it ejects the CO2 gas of 0.4~1.0 ton, etc conclude this problem is examined. Therefore, PVA fiber was mixed into the inorganic binder recycling the blast furnace slag, which is the industrial byproduct with the purpose studying the Geo polymer which doesn't use the cement at all silica fume, red mud, and etc. In addition, the water curing temperature was differentiated and the strength characteristic of the curing body tried to be examined.

  • PDF

Operational Characteristics of UBF -Anaerobic Digestion of Landfill Leachate- (상향류식 혐기성 생물막 여상(UBF)의 운전 특성 -침칠수 처리를 중심으로-)

  • Kim, Hyeong-Seok;Kim, Chul;Sung, Nak-Chang
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.4
    • /
    • pp.49-54
    • /
    • 1996
  • The anaerobic landfill leachate treatment can surmount dilution problem of high concentration landfill leachate, collect methane gas as byproduct, and treat low phosphate concentration leachate because of low nutrient salt requirement. The problems of conventional anaerobic treatment that are requirement of large reactor because of low microbial growth rate(HRT=20-30 days) and low volumetric loading rate(VLR=0.5-2.0 kg $COD/m^3\cdot day$) are able to surmount by introduction of high rate anaerobic treatment. In this study, the upflow blanket filter(UBF) which is high rate anaerobic process was applyed to the landfill leachate treatment. The acceptable volumetric loading rate and HRT were 18.23 kg $SCOD/m^3\cdot day$ and 13 hrs. SCOD removal rate was over 90% at VLR 18.23 kg $SCOD/m^3\cdot day$. The methane gas yield was $0.15 lCH_4/g$ SCOD added(at STP) at VLR 18.23 kg $SCOD/m^3\cdot day$. The solids accumulation yield was 0.40 g VSS/g COD removed.

  • PDF

H2-MHR PRE-CONCEPTUAL DESIGN SUMMARY FOR HYDROGEN PRODUCTION

  • Richards, Matt;Shenoy, Arkal
    • Nuclear Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • Hydrogen and electricity are expected to dominate the world energy system in the long term. The world currently consumes about 50 million metric tons of hydrogen per year, with the bulk of it being consumed by the chemical and refining industries. The demand for hydrogen is expected to increase, especially if the U.S. and other countries shift their energy usage towards a hydrogen economy, with hydrogen consumed as an energy commodity by the transportation, residential and commercial sectors. However, there is strong motivation to not use fossil fuels in the future as a feedstock for hydrogen production, because the greenhouse gas carbon dioxide is a byproduct and fossil fuel prices are expected to increase significantly. An advanced reactor technology receiving considerable international interest for both electricity and hydrogen production, is the modular helium reactor (MHR), which is a passively safe concept that has evolved from earlier high-temperature gas-cooled reactor (HTGR) designs. For hydrogen production, this concept is referred to as the H2-MHR. Two different hydrogen production technologies are being investigated for the H2-MHR; an advanced sulfur-iodine (SI) thermochemical water splitting process and high-temperature electrolysis (HTE). This paper describes pre-conceptual design descriptions and economic evaluations of full-scale, nth-of-a-kind SI-Based and HTE-Based H2-MHR plants. Hydrogen production costs for both types of plants are estimated to be approximately $2 per kilogram.

Vital tooth with periapical lesion: spontaneous healing after conservative treatment (생활치에서 나타나는 치근단 병소: 보존적 치료 후 자연치유)

  • Kim, Hyun-Joo;Lee, Seung-Jong;Jung, Il-Young;Park, Sung-Ho
    • Restorative Dentistry and Endodontics
    • /
    • v.37 no.2
    • /
    • pp.123-126
    • /
    • 2012
  • It is often presumed that apical periodontitis follows total pulp necrosis, and consequently root canal treatment is commonly performed. Periapical lesion development is usually caused by bacteria and its byproduct which irritate pulp, develop pulpitis, and result in necrosis through an irreversible process. Afterwards, apical periodontitis occurs. This phenomenon is observed as an apical radiolucency in radiographic view. However, this unusual case presents a spontaneous healing of periapical lesion, which has developed without pulp necrosis in a vital tooth, through conservative treatment.

Conversion of organic residue from solid-state anaerobic digestion of livestock waste to produce the solid fuel through hydrothermal carbonization

  • Yang, Seung Kyu;Kim, Daegi;Han, Seong Kuk;Kim, Ho;Park, Seyong
    • Environmental Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.456-461
    • /
    • 2018
  • The solid-state anaerobic digestion (SS-AD) has promoted the development and application for biogas production from biomass which operate a high solid content feedstock, as higher than 15% of total solids. However, the digested byproduct of SS-AD can be used as a fertilizer or as solid fuel, but it has serious problems: high moisture content and poor dewaterability. The organic residue from SS-AD has to be improved to address these problems and to make it a useful alternative energy source. Hydrothermal carbonization was investigated for conversion of the organic residue from the SS-AD of livestock waste to solid fuels. The effects of hydrothermal carbonization were evaluated by varying the reaction temperatures within the range of $180-240^{\circ}C$. Hydrothermal carbonization increased the calorific value through the reduction of the hydrogen and oxygen contents of the solid fuel, in addition to its drying performance. Therefore, after the hydrothermal carbonization, the H/C and O/C atomic ratios decreased through the chemical conversion. Thermogravimatric analysis provided the changed combustion characteristics due to the improvement of the fuel properties. As a result, the hydrothermal carbonization process can be said to be an advantageous technology in terms of improving the properties of organic waste as a solid-recovered fuel product.

Evaluation of the Effects of Carbon Dioxide on the Production of Engineered Biochar (기능성 바이오차 생산을 위한 이산화탄소의 영향 평가)

  • Lee, Sangyoon;Lee, Taewoo;Kwon, E. Eilhann
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.2
    • /
    • pp.41-49
    • /
    • 2022
  • To abate the environmental burdens arising from CO2 emissions, biochar offers a strategic means to sequester carbons due to its recalcitrant nature. Also, biochar has a great potential for the use as carbon-based adsorbent because it is a porous material. As such, developing the surface properties of biochar increases a chance to produce biochar with great adsorption performance. Given that biochar is a byproduct in biomass pyrolysis, characteristics of biochar are contingent on pyrolysis operating parameters. In this respect, this work focused on the investigation of surface properties of biochar by controlling temperature and reaction medium in pyrolysis of pine sawdust as case study. In particular, CO2 was used as reaction medium in pyrolysis process. According to pyrolytic temperature, the surface properties of biochar were indeed developed by CO2. The biochar engineered by CO2 showed the improved capability on CO2 sorption. In addition, CO2 has an effect on energy recovery by enhancing syngas production. Thus, this study offers the functionality of CO2 for converting biomass into engineered biochar as carbon-based adsorbent for CO2 sorption while recovering energy as syngas.