• Title/Summary/Keyword: process analytics

Search Result 120, Processing Time 0.028 seconds

Impact of Big Data Analytics on Indian E-Tailing from SCM to TCS

  • Avinash BM;Divakar GM;Rajasekhara Mouly Potluri;Megha B
    • Journal of Distribution Science
    • /
    • v.22 no.8
    • /
    • pp.65-76
    • /
    • 2024
  • Purpose: The study aims to recognize the relationship between big data analytics capabilities, big data analytics process, and perceived business performance from supply chain management to total customer satisfaction. Research design, data and methodology: The study followed a quantitative approach with a descriptive design. The data was collected from leading e-commerce companies in India using a structured questionnaire, and the data was coded and decoded using MS Excel, SPSS, and R language. It was further tested using Cronbach's alpha, KMO, and Bartlett's test for reliability and internal consistency. Results: The results showed that the big data analytics process acts as a robust mediator between big data analytics capabilities and perceived business performance. The 'direct, indirect and total effect of the model' and 'PLS-SEM model' showed that the big data analytics process directly impacts business performance. Conclusions: A complete indirect relationship exists between big data analytics capabilities and perceived business performance through the big data analytics process. The research contributesto e-commerce companies' understanding of the importance of big data analytics capabilities and processes.

Learning Analytics Framework on Metaverse

  • Sungtae LIM;Eunhee KIM;Hoseung BYUN
    • Educational Technology International
    • /
    • v.24 no.2
    • /
    • pp.295-329
    • /
    • 2023
  • The recent development of metaverse-related technology has led to efforts to overcome the limitations of time and space in education by creating a virtual educational environment. To make use of this platform efficiently, applying learning analytics has been proposed as an optimal instructional and learning decision support approach to address these issues by identifying specific rules and patterns generated from learning data, and providing a systematic framework as a guideline to instructors. To achieve this, we employed an inductive, bottom-up approach for framework modeling. During the modeling process, based on the activity system model, we specifically derived the fundamental components of the learning analytics framework centered on learning activities and their contexts. We developed a prototype of the framework through deduplication, categorization, and proceduralization from the components, and refined the learning analytics framework into a 7-stage framework suitable for application in the metaverse through 3 steps of Delphi surveys. Lastly, through a framework model evaluation consisting of seven items, we validated the metaverse learning analytics framework, ensuring its validity.

Prescriptive Analytics System Design Fusing Automatic Classification Method and Intellectual Structure Analysis Method (자동 분류 기법과 지적 구조 분석 기법을 융합한 처방적 분석 시스템 구현 방안 연구)

  • Jeong, Do-Heon
    • Journal of the Korean Society for information Management
    • /
    • v.34 no.4
    • /
    • pp.33-57
    • /
    • 2017
  • This study aims to introduce an emerging prescriptive analytics method and suggest its efficient application to a category-based service system. Prescriptive analytics method provides the whole process of analysis and available alternatives as well as the results of analysis. To simulate the process of optimization, large scale journal articles have been collected and categorized by classification scheme. In the process of applying the concept of prescriptive analytics to a real system, we have fused a dynamic automatic-categorization method for large scale documents and intellectual structure analysis method for scholarly subject fields. The test result shows that some optimized scenarios can be generated efficiently and utilized effectively for reorganizing the classification-based service system.

The Adoption of Big Data to Achieve Firm Performance of Global Logistic Companies in Thailand

  • KITCHAROEN, Krisana
    • Journal of Distribution Science
    • /
    • v.21 no.1
    • /
    • pp.53-63
    • /
    • 2023
  • Purpose: Big Data analytics (BDA) has been recognized to improve firm performance because it can efficiently manage and process large-scale, wide variety, and complex data structures. This study examines the determinants of Big Data analytics adoption toward marketing and financial performance of global logistic companies in Thailand. The research framework is adopted from the technology-organization-environment (TOE) model, including technological factors (relative advantages), organizational factors (technological infrastructure and absorptive capability), environmental factors (industry competition and government support), Big Data analytics adoption, marketing performance, and financial performance. Research design, data, and methodology: A quantitative method is applied by distributing the survey to 450 employees at the manager's level and above. The sampling methods include judgmental, stratified random, and convenience sampling. The data were analyzed by Confirmatory Factor Analysis (CFA) and Structural Equation Model (SEM). Results: The results showed that all factors significantly influence Big Data analytics adoption, except technological infrastructure. In addition, Big Data analytics adoption significantly influences marketing and financial performance. Conversely, marketing performance has no significant influence on financial performance. Conclusions: The findings of this study can contribute to the strategic improvement of firm performance through Big Data analytics adoption in the logistics, distribution, and supply chain industries.

IoT data analytics architecture for smart healthcare using RFID and WSN

  • Ogur, Nur Banu;Al-Hubaishi, Mohammed;Ceken, Celal
    • ETRI Journal
    • /
    • v.44 no.1
    • /
    • pp.135-146
    • /
    • 2022
  • The importance of big data analytics has become apparent with the increasing volume of data on the Internet. The amount of data will increase even more with the widespread use of Internet of Things (IoT). One of the most important application areas of the IoT is healthcare. This study introduces new real-time data analytics architecture for an IoT-based smart healthcare system, which consists of a wireless sensor network and a radio-frequency identification technology in a vertical domain. The proposed platform also includes high-performance data analytics tools, such as Kafka, Spark, MongoDB, and NodeJS, in a horizontal domain. To investigate the performance of the system developed, a diagnosis of Wolff-Parkinson-White syndrome by logistic regression is discussed. The results show that the proposed IoT data analytics system can successfully process health data in real-time with an accuracy rate of 95% and it can handle large volumes of data. The developed system also communicates with a riverbed modeler using Transmission Control Protocol (TCP) to model any IoT-enabling technology. Therefore, the proposed architecture can be used as a time-saving experimental environment for any IoT-based system.

A Study on Digital Marketing Model for Improving Campaign Performance (캠페인 실행에 영향을 미치는 디지털 마케팅 성과모형 연구)

  • Lee, Sang-Ho;Kim, Jong-Bae
    • Journal of Digital Contents Society
    • /
    • v.13 no.2
    • /
    • pp.205-211
    • /
    • 2012
  • This paper presents research result of digital marketing model for improving enterprise marketing campaign performance. Recently, the enterprises which had completed projects such as ERP, CRM, and SCM for business value chain process transformation are working to improve enterprise marketing process. It is the trend for enterprises to use digital marketing tactics to overcome the limit of existing traditional marketing tactics. Especially, enterprises try to adopt digital marketing for marketing campaign performance. In this paper, digital marketing research model and hypothesis were established and statistically analyzed by marketing expert survey research. The research finding is that Web Analytics, Social Analytics, Personalized CRM, Campaign execution automation, Real-Time campaign management can be core influencers for marketing campaign performance improvement.

Leveraging Analytics for Talent Acquisition: Case of IT Sector in India

  • Avik Ghosh;Bhaskar Basu
    • Asia pacific journal of information systems
    • /
    • v.30 no.4
    • /
    • pp.879-918
    • /
    • 2020
  • One of the challenges faced by Talent Acquisition teams today pertains to the acquisition of human resources by matching job descriptions and skillsets desired. It is more so in the case of competitive sectors like the Indian IT sector. There can be various channels for Talent Acquisition and accordingly, the cost and benefits might vary. However, the consequences of a mismatch have an impact on the quality of deliverables, high recruitment expenses and loss of revenue for the organization. With increased and diverse sources of data that are available to organizations today, there is ample opportunity to apply analytics for informed decision making in this field. This paper reveals useful insights that help streamline the Talent Acquisition process in the Indian IT Industry. The paper adopts a data-centric approach to examine the critical determinants for efficient and effective Talent Acquisition process in IT organizations. Selected supervised machine learning algorithms are applied for the analysis of the dataset. The study is likely to help organizations in reassessing their talent acquisition strategy with respect to key parameters like expected cost to company (CTC), candidate sourcing channels and optimal joining period.

A Study on the Effect of Selection on Data Analytics by Auditor (감사인의 데이터 분석 기법 채택에 영향을 미치는 요인 연구)

  • Jung, Gwan Hoon;Lee, Jung Hoon;Kim, Da Som
    • Journal of Information Technology Applications and Management
    • /
    • v.22 no.1
    • /
    • pp.37-60
    • /
    • 2015
  • As the dependence on information systems in enterprises has grown dramatically, the importance of implementing information systems in audit has been increased as well. However, there is a lact of about utilization of information system for audit process. Thus, this study is to investigate the factors that effect auditor's adopting Data Analytics to audit work. Through literature research and focus group interview, we added two factors that affect the behavioral intention to UTAUT model. We have selected performance expectancy, effort expectancy, social influence, facilitating conditions, anxiety, task fit, behavioral intention as variables and verified hypotheses based on survey questionnaires from auditors. As a result, it was found that performance expectations, social influence, task fit influenced the behavior intention. In Addition, we analyzed adding two variables, IT-related work experience and type of auditor as moderate variable. This study has an implication for companies to motivate implementation as well as activation of Data Analytics technique.

Integration of Cloud and Big Data Analytics for Future Smart Cities

  • Kang, Jungho;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • v.15 no.6
    • /
    • pp.1259-1264
    • /
    • 2019
  • Nowadays, cloud computing and big data analytics are at the center of many industries' concerns to take advantage of the potential benefits of building future smart cities. The integration of cloud computing and big data analytics is the main reason for massive adoption in many organizations, avoiding the potential complexities of on-premise big data systems. With these two technologies, the manufacturing industry, healthcare system, education, academe, etc. are developing rapidly, and they will offer various benefits to expand their domains. In this issue, we present a summary of 18 high-quality accepted articles following a rigorous review process in the field of cloud computing and big data analytics.

A Business Application of the Business Intelligence and the Big Data Analytics (비즈니스 인텔리전스와 빅데이터 분석의 비즈니스 응용)

  • Lee, Ki-Kwang;Kim, Tae-Hwan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.4
    • /
    • pp.84-90
    • /
    • 2019
  • Lately, there have been tremendous shifts in the business technology landscape. Advances in cloud technology and mobile applications have enabled businesses and IT users to interact in entirely new ways. One of the most rapidly growing technologies in this sphere is business intelligence, and associated concepts such as big data and data mining. BI is the collection of systems and products that have been implemented in various business practices, but not the information derived from the systems and products. On the other hand, big data has come to mean various things to different people. When comparing big data vs business intelligence, some people use the term big data when referring to the size of data, while others use the term in reference to specific approaches to analytics. As the volume of data grows, businesses will also ask more questions to better understand the data analytics process. As a result, the analysis team will have to keep up with the rising demands on the infrastructure that supports analytics applications brought by these additional requirements. It's also a good way to ascertain if we have built a valuable analysis system. Thus, Business Intelligence and Big Data technology can be adapted to the business' changing requirements, if they prove to be highly valuable to business environment.