• Title/Summary/Keyword: problem features

Search Result 1,858, Processing Time 0.03 seconds

A Novel Approach of Feature Extraction for Analog Circuit Fault Diagnosis Based on WPD-LLE-CSA

  • Wang, Yuehai;Ma, Yuying;Cui, Shiming;Yan, Yongzheng
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2485-2492
    • /
    • 2018
  • The rapid development of large-scale integrated circuits has brought great challenges to the circuit testing and diagnosis, and due to the lack of exact fault models, inaccurate analog components tolerance, and some nonlinear factors, the analog circuit fault diagnosis is still regarded as an extremely difficult problem. To cope with the problem that it's difficult to extract fault features effectively from masses of original data of the nonlinear continuous analog circuit output signal, a novel approach of feature extraction and dimension reduction for analog circuit fault diagnosis based on wavelet packet decomposition, local linear embedding algorithm, and clone selection algorithm (WPD-LLE-CSA) is proposed. The proposed method can identify faulty components in complicated analog circuits with a high accuracy above 99%. Compared with the existing feature extraction methods, the proposed method can significantly reduce the quantity of features with less time spent under the premise of maintaining a high level of diagnosing rate, and also the ratio of dimensionality reduction was discussed. Several groups of experiments are conducted to demonstrate the efficiency of the proposed method.

A High Efficiency ZVS PWM Asymmetrical Half Bridge Converter for Plasma Display Panel Sustaining Power Module

  • Han Sang-Kyoo;Moon Gun-Woo;Youn Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.537-541
    • /
    • 2004
  • A high efficiency ZVS PWM asymmetrical half bridge converter for a plasma display panel (PDP) sustaining power module is proposed in this paper. To achieve the ZVS of power switches for the wide fond range, n small additional inductor $L_{lkg}$, which also acts as an output filter inductor, is serially inserted to the transformer primary side. Then, to solve the problem related to ringing in the secondary rectifier caused by $L_{lkg}$, the proposed circuit employs a structure without the output filter inductor, which helps the voltages across rectifier diodes to be clamped at the output voltage. Therefore, no dissipative RC (resistor capacitor) snubber for rectifier diodes is needed and n high efficiency as well as low noise output voltage can be realized. In addition, since it has no large output inductor filter, it features a simpler structure, lower cost, less mass, and lighter weight. Moreover, since all energy stored in $L_{lkg}$ is transferred to the output side, the circulating energy problem can be effectively solved. The operational principle, theoretical analysis, and design considerations are presented. To confirm the operation, validity, and features of the proposed circuit, experimental results from a 425W, 385Vdc/170Vdc prototype are presented.

  • PDF

An Approach for Localization Around Indoor Corridors Based on Visual Attention Model (시각주의 모델을 적용한 실내 복도에서의 위치인식 기법)

  • Yoon, Kook-Yeol;Choi, Sun-Wook;Lee, Chong-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.2
    • /
    • pp.93-101
    • /
    • 2011
  • For mobile robot, recognizing its current location is very important to navigate autonomously. Especially, loop closing detection that robot recognize location where it has visited before is a kernel problem to solve localization. A considerable amount of research has been conducted on loop closing detection and localization based on appearance because vision sensor has an advantage in terms of costs and various approaching methods to solve this problem. In case of scenes that consist of repeated structures like in corridors, perceptual aliasing in which, the two different locations are recognized as the same, occurs frequently. In this paper, we propose an improved method to recognize location in the scenes which have similar structures. We extracted salient regions from images using visual attention model and calculated weights using distinctive features in the salient region. It makes possible to emphasize unique features in the scene to classify similar-looking locations. In the results of corridor recognition experiments, proposed method showed improved recognition performance. It shows 78.2% in the accuracy of single floor corridor recognition and 71.5% for multi floor corridors recognition.

Chinese Prosody Generation Based on C-ToBI Representation for Text-to-Speech (음성합성을 위한 C-ToBI기반의 중국어 운율 경계와 F0 contour 생성)

  • Kim, Seung-Won;Zheng, Yu;Lee, Gary-Geunbae;Kim, Byeong-Chang
    • MALSORI
    • /
    • no.53
    • /
    • pp.75-92
    • /
    • 2005
  • Prosody Generation Based on C-ToBI Representation for Text-to-SpeechSeungwon Kim, Yu Zheng, Gary Geunbae Lee, Byeongchang KimProsody modeling is critical in developing text-to-speech (TTS) systems where speech synthesis is used to automatically generate natural speech. In this paper, we present a prosody generation architecture based on Chinese Tone and Break Index (C-ToBI) representation. ToBI is a multi-tier representation system based on linguistic knowledge to transcribe events in an utterance. The TTS system which adopts ToBI as an intermediate representation is known to exhibit higher flexibility, modularity and domain/task portability compared with the direct prosody generation TTS systems. However, the cost of corpus preparation is very expensive for practical-level performance because the ToBI labeled corpus has been manually constructed by many prosody experts and normally requires a large amount of data for accurate statistical prosody modeling. This paper proposes a new method which transcribes the C-ToBI labels automatically in Chinese speech. We model Chinese prosody generation as a classification problem and apply conditional Maximum Entropy (ME) classification to this problem. We empirically verify the usefulness of various natural language and phonology features to make well-integrated features for ME framework.

  • PDF

NEW RESULTS TO BDD TRUNCATION METHOD FOR EFFICIENT TOP EVENT PROBABILITY CALCULATION

  • Mo, Yuchang;Zhong, Farong;Zhao, Xiangfu;Yang, Quansheng;Cui, Gang
    • Nuclear Engineering and Technology
    • /
    • v.44 no.7
    • /
    • pp.755-766
    • /
    • 2012
  • A Binary Decision Diagram (BDD) is a graph-based data structure that calculates an exact top event probability (TEP). It has been a very difficult task to develop an efficient BDD algorithm that can solve a large problem since its memory consumption is very high. Recently, in order to solve a large reliability problem within limited computational resources, Jung presented an efficient method to maintain a small BDD size by a BDD truncation during a BDD calculation. In this paper, it is first identified that Jung's BDD truncation algorithm can be improved for a more practical use. Then, a more efficient truncation algorithm is proposed in this paper, which can generate truncated BDD with smaller size and approximate TEP with smaller truncation error. Empirical results showed this new algorithm uses slightly less running time and slightly more storage usage than Jung's algorithm. It was also found, that designing a truncation algorithm with ideal features for every possible fault tree is very difficult, if not impossible. The so-called ideal features of this paper would be that with the decrease of truncation limits, the size of truncated BDD converges to the size of exact BDD, but should never be larger than exact BDD.

A Design for a Hyperledger Fabric Blockchain-Based Patch-Management System

  • Song, Kyoung-Tack;Kim, Shee-Ihn;Kim, Seung-Hee
    • Journal of Information Processing Systems
    • /
    • v.16 no.2
    • /
    • pp.301-317
    • /
    • 2020
  • An enterprise patch-management system (PMS) typically supplies a single point of failure (SPOF) of centralization structure. However, a Blockchain system offers features of decentralization, transaction integrity, user certification, and a smart chaincode. This study proposes a Hyperledger Fabric Blockchain-based distributed patch-management system and verifies its technological feasibility through prototyping, so that all participating users can be protected from various threats. In particular, by adopting a private chain for patch file set management, it is designed as a Blockchain system that can enhance security, log management, latest status supervision and monitoring functions. In addition, it uses a Hyperledger Fabric that owns a practical Byzantine fault tolerant consensus algorithm, and implements the functions of upload patch file set, download patch file set, and audit patch file history, which are major features of PMS, as a smart contract (chaincode), and verified this operation. The distributed ledger structure of Blockchain-based PMS can be a solution for distributor and client authentication and forgery problems, SPOF problem, and distribution record reliability problem. It not only presents an alternative to dealing with central management server loads and failures, but it also provides a higher level of security and availability.

On the Use of Adaptive Weights for the F-Norm Support Vector Machine

  • Bang, Sung-Wan;Jhun, Myoung-Shic
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.5
    • /
    • pp.829-835
    • /
    • 2012
  • When the input features are generated by factors in a classification problem, it is more meaningful to identify important factors, rather than individual features. The $F_{\infty}$-norm support vector machine(SVM) has been developed to perform automatic factor selection in classification. However, the $F_{\infty}$-norm SVM may suffer from estimation inefficiency and model selection inconsistency because it applies the same amount of shrinkage to each factor without assessing its relative importance. To overcome such a limitation, we propose the adaptive $F_{\infty}$-norm ($AF_{\infty}$-norm) SVM, which penalizes the empirical hinge loss by the sum of the adaptively weighted factor-wise $L_{\infty}$-norm penalty. The $AF_{\infty}$-norm SVM computes the weights by the 2-norm SVM estimator and can be formulated as a linear programming(LP) problem which is similar to the one of the $F_{\infty}$-norm SVM. The simulation studies show that the proposed $AF_{\infty}$-norm SVM improves upon the $F_{\infty}$-norm SVM in terms of classification accuracy and factor selection performance.

Deep CNN based Pilot Allocation Scheme in Massive MIMO systems

  • Kim, Kwihoon;Lee, Joohyung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.10
    • /
    • pp.4214-4230
    • /
    • 2020
  • This paper introduces a pilot allocation scheme for massive MIMO systems based on deep convolutional neural network (CNN) learning. This work is an extension of a prior work on the basic deep learning framework of the pilot assignment problem, the application of which to a high-user density nature is difficult owing to the factorial increase in both input features and output layers. To solve this problem, by adopting the advantages of CNN in learning image data, we design input features that represent users' locations in all the cells as image data with a two-dimensional fixed-size matrix. Furthermore, using a sorting mechanism for applying proper rule, we construct output layers with a linear space complexity according to the number of users. We also develop a theoretical framework for the network capacity model of the massive MIMO systems and apply it to the training process. Finally, we implement the proposed deep CNN-based pilot assignment scheme using a commercial vanilla CNN, which takes into account shift invariant characteristics. Through extensive simulation, we demonstrate that the proposed work realizes about a 98% theoretical upper-bound performance and an elapsed time of 0.842 ms with low complexity in the case of a high-user-density condition.

An Algorithm to Obtain Location Information of Objects with Concentric Noise Patterns (동심원 잡음패턴을 가진 물체의 위치정보획득 알고리즘)

  • 심영석;문영식;박성한
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.11
    • /
    • pp.1393-1404
    • /
    • 1995
  • For the factory automation(FA) of production or assembly lines, computer vision techniques have been widely used for the recognition and position-control of objects. In this application, it is very important to analyze characteristic features of each object and to find an efficient matching algorithm using the selected features. If the object has regular or homogeneous patterns, the problem is relatively simple. However, If the object is shifted or rotated, and if the depth of the input visual system is not fixed, the problem becomes very complicated. Also, in order to understand and recognize objects with concentric noise patterns, it is more effective to use feature-information represented in polar coordinates than in cartesian coordinates. In this paper, an algorithm for the recognition of objects with concentric circular noise-patterns is proposed. And position-conrtol information is calculated with the matching result. First, a filtering algorithm for eliminating concentric noise patterns is proposed to obtain concentric-feature patterns. Then a shift, rotation and scale invariant alogrithm is proposed for the recognition and position-control of objects uusing invariant feature information. Experimental results indicate the effectiveness of the proposed alogrithm.

  • PDF

Using GAs to Support Feature Weighting and Instance Selection in CBR for CRM

  • Ahn, Hyun-Chul;Kim, Kyoung-Jae;Han, In-Goo
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.11a
    • /
    • pp.516-525
    • /
    • 2005
  • Case-based reasoning (CBR) has been widely used in various areas due to its convenience and strength in complex problem solving. Generally, in order to obtain successful results from CBR, effective retrieval of useful prior cases for the given problem is essential. However, designing a good matching and retrieval mechanism for CBR systems is still a controversial research issue. Most prior studies have tried to optimize the weights of the features or selection process of appropriate instances. But, these approaches have been performed independently until now. Simultaneous optimization of these components may lead to better performance than in naive models. In particular, there have been few attempts to simultaneously optimize the weight of the features and selection of the instances for CBR. Here we suggest a simultaneous optimization model of these components using a genetic algorithm (GA). We apply it to a customer classification model which utilizes demographic characteristics of customers as inputs to predict their buying behavior for a specific product. Experimental results show that simultaneously optimized CBR may improve the classification accuracy and outperform various optimized models of CBR as well as other classification models including logistic regression, multiple discriminant analysis, artificial neural networks and support vector machines.

  • PDF