• 제목/요약/키워드: probiotic feed production

검색결과 75건 처리시간 0.017초

Dietary Regulations of the Intestinal Barrier Function at Weaning

  • Bosi, Paolo;Gremokolini, Cyrien;Trevisi, Paolo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제16권4호
    • /
    • pp.596-608
    • /
    • 2003
  • Weaning is a complex phase when the mammal suffers the action of different stressors that contribute to negatively affect the efficiency of the intestinal mucosa and of the whole local integrated system, that acts as barrier against any nocuous agent. The components of this barrier are mechanical, chemical, and bacteriological; immunological and not. The development of contact with a saprophyte microflora and the maintenance of feed intake after the interruption of motherly nutrition are essential for the maturation of an equilibrated local immune function and for a functional integrity of villi. Opportunities and limits of some dietary strategies that can contribute to reduce negative effects of weaning on health and performance are discussed. Knowledges on the possible mechanism of action of probiotics are upgraded, particularly for their supposed role in the balance between different immune functions (effectory/regulatory). Some tools to control pathogen microflora are reviewed (acids, herbs, immunoglobulin sources) and practical feeding systems are proposed.

남은 음식물로 호기적 액상효모발효를 이용한 생균사료를 생산할 때 생균수에 대한 교반 속도의 영향 (Influence of Agitation Speed on Cell Growth in the Aerobic Yeast Fermentation of Pulverized Liquid Food Wastes for Probiotic Feed Production)

  • 유성진;유승용;이기영
    • 유기물자원화
    • /
    • 제9권4호
    • /
    • pp.99-104
    • /
    • 2001
  • 곱게 갈아 액화시킨 음식물 찌꺼기를 기질로 생균사료를 생산하기 위한 효모의 호기적 액상발효에 있어서 효모증식에 대한 교반속도의 영향을 연구하였다. screening을 통해 선택한 효모인 Kluyvermyces marxianus를 종균으로 2liter jar fermenter를 이용하여 호기적 조건에서 곱게 분쇄해 10% 고형분 함량을 갖는 기질에 교반속도를 500rpm, 900rpm, 1200rpm를 다르게 조정하여 $35^{\circ}C$에서 증식시켰다. 효모의 증식을 촉진시키기 위하여 고분자물질을 분해하는 효소를 분비하는 곰팡이 Aspergillus oryzae와 혼합발효를 실시하여 단독발효와 비교하였다. 발효결과 교반속도가 증가할수록 생균수도 높아져 400rpm에서보다는 900rpm에서 높은 생균수를 보였으나 1200rpm에서는 오히려 감소하였다. 혼합발효는 amylase의 역가를 높여주어 증식속도를 높여 주나 발효종료단계에서 최고 생균수를 증가시켜주지는 않는 것으로 나타났다.

  • PDF

사료용 생균제 개발을 위한 마늘 내성 유산균의 분리 (Isolation of Garlic Resistant Lactic Acid Bacteria for Feed Additives)

  • 김유진;장서정;박정민;김창욱;박영서
    • 산업식품공학
    • /
    • 제13권4호
    • /
    • pp.352-359
    • /
    • 2009
  • 마늘의 항균력에 저항성을 갖는 유산균을 분리하기 위해서 마늘 추출물이 첨가된 배지에서 생육하는 112 균주를 김치, 젓갈, 장아찌류로부터 분리하였다. 이 중에서 14균주에 대해서 내산성 및 내담즙성 그리고, 가축 병원성 세균인 Salmonella choleraesuis, Escherichia coli, Staphylococcus aureus, Shigella flesneri에 대해 항균력을 조사한 결과, 파김치 유래의 P'GW50-2 균주가 가장 우수한 특성을 지니고 있어 생균제로 이용 가능한 균주로 선발하였다. 선발된 균주는 16S rRNA 유전자의 염기서열 분석결과 Lactobacillus plantarum으로 동정되었고 L. plantarum TJ-LP-002으로 명명하였다. L. plantarum TJ-LP-002는 Bacillus cereus, S. aureus, Clostridium perfringens와 같은 Gram 양성균과 Aeromonas hydrophila, E. coli, Pseudomonas, Salmonella, Shigella와 같은 Gram 음성균에 대해서 비교적 넓은 항균활성을 나타내었다.

Microencapsulation of Lactobacillus plantarum MB001 and its probiotic effect on growth performance, cecal microbiome and gut integrity of broiler chickens in a tropical climate

  • Sasi Vimon;Kris Angkanaporn;Chackrit Nuengjamnong
    • Animal Bioscience
    • /
    • 제36권8호
    • /
    • pp.1252-1262
    • /
    • 2023
  • Objective: Microencapsulation technologies have been developed and successfully applied to protect the probiotic bacterial cells damaged by environmental exposure. This study aimed to investigate the effects of microencapsulation of Lactobacillus plantarum MB001 on the growth performance, ileal nutrient digestibility, jejunal histomorphology and cecal microbiome of broiler chickens in a tropical climate. Methods: A total of 288 one-day-old female broilers (Ross 308) were randomly allocated into 4 groups (6 replicates of 12 birds). Treatments included, i) a basal diet (NC), ii) NC + avilamycin (10 mg/kg) (PC), iii) NC + non-encapsulated L. plantarum MB001 (1×108 colony-forming unit [CFU]/kg of diet) (N-LP), iv) NC + microencapsulated L. plantarum MB001 (1×108 CFU/kg of diet) (ME-LP). Results: Dietary supplementation of ME-LP improved average daily gain, and feed conversion ratio of broilers throughout the 42-d trial period (p<0.05), whereas ME-LP did not affect average daily feed intake compared with NC group. Both N-LP and ME-LP improved apparent ileal digestibility of crude protein and ether extract compared with NC group (p<0.05). The broilers fed ME-LP supplemented diet exhibited a beneficial effect on jejunal histomorphology of villus height (VH), crypt depth (CD) and villus height to crypt depth ratio (VH:CD) of broilers compared to NC group (p<0.05). At the phylum level, Firmicutes was enriched (p<0.05) and Proteobacteria was decreased (p<0.05) only in the ME-LP group. At the genus level, the ME-LP diets increased (p<0.05) the number of both Lactobacillus and Enterococcus compared to NC, PC, and N-LP groups (p<0.05). Conclusion: Microencapsulation assists the efficient functioning of probiotics. ME-LP could be potentially used as a feed additive for improvement of cecal microbiota, gut integrity and nutrient utilization, leading to better performance of broilers.

Effects of Probiotic-vitacogen and β1-4 Galacto-oligosaccharides Supplementation on Methanogenesis and Energy and Nitrogen Utilization in Dairy Cows

  • Mwenya, B.;Zhou, X.;Santoso, B.;Sar, C.;Gamo, Y.;Kobayashi, T.;Takahashi, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권3호
    • /
    • pp.349-354
    • /
    • 2004
  • The effects of probiotic-vitacogen and galacto-oligosaccharides (GOS) supplementation on methanogesis, energy and nitrogen utilization in replacement dairy cows were evaluated. A basal diet comprising orchardgrass hay, lucerne hay cube and concentrate (2:2:1, DM basis) were fed with or without supplements to four cows at $80g\;DM/kgBW^{0.75}$per day in a $4{\times}4$ Latin square arrangement. The four treatments were; 1) basal diet, 2) basal diet plus 100 g probiotic-vitacogen, 3) basal diet plus 50 g GOS, 4) basal diet plus 50 g GOS and 100 g probiotic-vitacogen. Nutrient apparent digestibility was not altered by the effect of supplementation. Nitrogen intake was significantly (p<0.001) higher for the two vitacogen-supplemented diets compared to control and GOS supplemented diets. However, vitacogen supplemented diets had numerically higher fecal and urinary nitrogen losses, thereby, having lower nitrogen retention compared to control and GOS supplemented diets. Gross energy intake was also significantly (p<0.05) higher for vitacogen-supplemented diets compared to control and GOS diets, however, due to higher losses in feces, urine, methane and heat, GOS supplemented diet had numerically higher energy retention. There was an 11% reduction in methane emission (liters/day) in GOS supplemented diet compared to control diet. However, the combination of GOS with vitacogen resulted in an increased methane emission. When expressed per unit of animal production (g/kg live-weight gain), methane production tended to be lower in vitacogensupplemented diets compared to control and GOS diets. The supplementation of replacement dairy cows with GOS reduced methane emission (liters/day), while, vitacogen supplementation reduced methane emission per unit animal production. The two feed supplements may contribute to the abatement of methane as a greenhouse gas.

The effect of multi-strain probiotics as feed additives on performance, immunity, expression of nutrient transporter genes and gut morphometry in broiler chickens

  • Biswas, Avishek;Dev, Kapil;Tyagi, Pramod K;Mandal, Asitbaran
    • Animal Bioscience
    • /
    • 제35권1호
    • /
    • pp.64-74
    • /
    • 2022
  • Objective: This study was conducted to investigate the effects of dietary multi-strain probiotic (MSP) (Bacillus coagulans Unique IS2 + Bacillus subtillis UBBS14 + Saccharomyces boulardii Unique 28) on performance, gut morphology and expression of nutrient transporter related genes in broiler chickens. Methods: A total of 256 (4×8×8) day-old CARIBRO Vishal commercial broiler chicks of uniform body weight were randomly distributed into four treatments with 8 replicates each and having eight chicks in each replicate. Four dietary treatments were T1 (negative control-basal diet), T2 (positive control-antibiotic bacitracin methylene disalicylate at 20 mg/kg diet), T3 (MSP at 107 colony-forming unit [CFU]/g feed), and T4 (MSP at 108 CFU/g feed). Results: During 3 to 6 weeks and 0 to 6 weeks, the body weight gain increased significantly (p<0.05) in T3 and T4 groups. The feed intake significantly (p<0.05) reduced from T1 to T3 during 0 to 3 weeks and the feed conversion ratio also significantly (p<0.05) improved in T3 and T4 during 0 to 6 weeks. The humoral and cell mediated immune response and the weight of immune organs were also significantly (p<0.05) improved in T3 and T4. However, significant (p<0.05) dietary effects were observed on intestinal histo-morphometry of ileum in T3 followed by T4 and T2. At 14 d post hatch, the relative gene expression of glucose transporter (GLUT5), sodium-dependent glucose transporter (SGLT1) and peptide transporter (PepT1) showed a significant (p<0.05) up-regulating pattern in T2, T3, and T4. Whereas, at 21 d post hatch, the gene expression of SGLT1 and PepT1 was significantly (p<0.05) downregulated in MSP supplemented treatments T3 and T4. Conclusion: The supplementation of MSP at 107 CFU/g diet showed significant effects with improved performance, immune response, gut morphology and expression of nutrient transporter genes. Thus, the MSP could be a suitable alternative to antibiotic growth promoters in chicken diets.

Assessment of lactic acid bacteria isolated from the chicken digestive tract for potential use as poultry probiotics

  • Merisa Sirisopapong;Takeshi Shimosato;Supattra Okrathok;Sutisa Khempaka
    • Animal Bioscience
    • /
    • 제36권8호
    • /
    • pp.1209-1220
    • /
    • 2023
  • Objective: The use of probiotics as an alternative to antibiotics in animal feed has received considerable attention in recent decades. Lactic acid bacteria (LAB) have remarkable functional properties promoting host health and are major microorganisms for probiotic purposes. The aim of this study was to characterize LAB strains of the chicken digestive tract and to determine their functional properties for further use as potential probiotics in poultry. Methods: A total of 2,000 colonies were isolated from the ileum and cecal contents of the chickens based on their phenotypic profiles and followed by a preliminary detection for acid and bile tolerance. The selected 200 LAB isolates with exhibited well-tolerance in acid and bile conditions were then identified by sequencing the 16S rDNA gene, followed by acid and bile tolerance, antimicrobial activity, adhesion to epithelial cells and additional characteristics on the removal of cholesterol. Then, the two probiotic strains (L. ingluviei and L. salivarious) which showed the greatest advantage in vitro testing were selected to assess their efficacy in broiler chickens. Results: It was found that 200 LAB isolates that complied with all measurement criteria belonged to five strains, including L. acidophilus (63 colonies), L. ingluviei (2 colonies), L. reuteri (58 colonies), L. salivarius (72 colonies), and L. saerimneri (5 colonies). We found that the L. ingluviei and L. salivarius can increase the population of LAB and Bifidobacterium spp. while reducing Enterobacteria spp. and Escherichia coli in the cecal content of chickens. Additionally, increased concentrations of valeric acid and short chain fatty acids were also observed. Conclusion: This study indicates that all five Lactobacillus strains isolated from gut contents of chickens are safe and possess probiotic properties, especially L. ingluviei and L. salivarius. Future studies should evaluate the potential for growth improvement in broilers.

Growth Performance and Meat Quality of Broiler Chickens Supplemented with Bacillus licheniformis in Drinking Water

  • Liu, Xiaolu;Yan, Hai;Lv, Le;Xu, Qianqian;Yin, Chunhua;Zhang, Keyi;Wang, Pei;Hu, Jiye
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권5호
    • /
    • pp.682-689
    • /
    • 2012
  • A feeding trial was conducted to investigate effects of Bacillus licheniformis on growth performance and meat quality of broilers. Nine hundred one-d-old broiler chicks were randomly assigned to 3 experimental groups with three replicate pens of 100 broiler chicks. Three treatments were i) control, ii) basal diets supplemented with 1 ml of B. licheniformis for each in feed water per day iii) basal diets supplemented with 2 ml of B. licheniformis per chick in feed water per day. The supplementation of B. licheniformis significantly increased body weight in grower chickens (p<0.05), and significantly improved the feed conversion in 3 to 6 and 0 to 6 wk feeding period compared with the control group (p<0.05). Additionally, the supplement also resulted in increased protein and free amino acid contents, and decreased fat content in chicken breast fillet (p<0.05). Furthermore, improvement in sensory attributes was observed in broilers fed with the probiotic. In conclusion, B. licheniformis treatments resulted in a significant increase (p<0.05) in broiler productivity based on an index taking into account daily weight gain and feed conversion rate. Meanwhile, the probiotic contributed towards an improvement of the chemical, nutritional and sensorial characteristics of breast fillet. Overall, the study indicates that B. licheniformis can be used as a growth promoter and meat quality enhancer in broiler poultry.

INFLUENCE OF DRIED Sacillus subtilis AND LACTOBACILLI CULTURES ON INTESTINAL MICROFLORA AND PERFORMANCE IN BROILERS

  • Jin, L.Z.;Ho, Y.W.;Abdullah, N.;Jalaudin, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제9권4호
    • /
    • pp.397-403
    • /
    • 1996
  • Two hundred 10-day-lid, male Arbor Acres broiler chicks divided randomly into 4 groups of 50 chicks each were used. Different feeding treatment was carried out for each group. Chicks in treatment 1 were fed a basal diet(Starter feed)(control); treatment 2, a basal diet + 0.1% B. subtilis culture; treatment 3, a basal diet + 0.2% lactobacilli culture in the feed; and treatment 4, a basal diet + 5 g lactobacilli in the drinking water. The viable bacterial counts for each treatment were approximately $10^9cells/kg$ feed. The weight gain in chickens given feeds incorporated with B. subtilis and lactobacilli was significantly(p < 0.05) higher than those of the control. With regard to feed efficiency, there was a definite tendency towards a higher feed : gain lower(p < 0.05) feed : gain ratio. A significantly(p < 0.05) larger population of Lactobacillus was found in the small intestine of chickens fed with feed incorporated with B. subtilis at 21 and 28 days and with lactobacilli at 14, 21 and 28 days. Populations of intestinal E. coli in broilers given feed added with B. subtilis were not significantly(p < 0.05) different from those of the control, but in chickens fed lactobacilli-added feed, their populations wee significantly lower(p < 0.05) at 14 and 21 days. No significant differences were found among the treatments and the control in the occurrence of Salmonella and Campylobacter during the whole experimental period.

Effect of Sodium Nitrate and Nitrate Reducing Bacteria on In vitro Methane Production and Fermentation with Buffalo Rumen Liquor

  • Sakthivel, Pillanatham Civalingam;Kamra, Devki Nandan;Agarwal, Neeta;Chaudhary, Chandra
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권6호
    • /
    • pp.812-817
    • /
    • 2012
  • Nitrate can serve as a terminal electron acceptor in place of carbon dioxide and inhibit methane emission in the rumen and nitrate reducing bacteria might help enhance the reduction of nitrate/nitrite, which depends on the type of feed offered to animals. In this study the effects of three levels of sodium nitrate (0, 5, 10 mM) on fermentation of three diets varying in their wheat straw to concentrate ratio (700:300, low concentrate, LC; 500:500, medium concentrate, MC and 300:700, high concentrate, HC diet) were investigated in vitro using buffalo rumen liquor as inoculum. Nitrate reducing bacteria, isolated from the rumen of buffalo were tested as a probiotic to study if it could help in enhancing methane inhibition in vitro. Inclusion of sodium nitrate at 5 or 10 mM reduced (p<0.01) methane production (9.56, 7.93 vs. 21.76 ml/g DM; 12.20, 10.42 vs. 25.76 ml/g DM; 15.49, 12.33 vs. 26.86 ml/g DM) in LC, MC and HC diets, respectively. Inclusion of nitrate at both 5 and 10 mM also reduced (p<0.01) gas production in all the diets, but in vitro true digestibility (IVTD) of feed reduced (p<0.05) only in LC and MC diets. In the medium at 10 mM sodium nitrate level, there was 0.76 to 1.18 mM of residual nitrate and nitrite (p<0.01) also accumulated. In an attempt to eliminate residual nitrate and nitrite in the medium, the nitrate reducing bacteria were isolated from buffalo adapted to nitrate feeding and introduced individually (3 ml containing 1.2 to $2.3{\times}10^6$ cfu/ml) into in vitro incubations containing the MC diet with 10 mM sodium nitrate. Addition of live culture of NRBB 57 resulted in complete removal of nitrate and nitrite from the medium with a further reduction in methane and no effect on IVTD compared to the control treatments containing nitrate with autoclaved cultures or nitrate without any culture. The data revealed that nitrate reducing bacteria can be used as probiotic to prevent the accumulation of nitrite when sodium nitrate is used to reduce in vitro methane emissions.