• Title/Summary/Keyword: probe diffusion

Search Result 117, Processing Time 0.033 seconds

Enhancement of DNA Microarray Hybridization using Microfluidic Biochip (미세유체 바이오칩을 이용한 DNA 마이크로어레이 Hybridization 향상)

  • Lee, H.H.;Kim, Y.S.
    • KSBB Journal
    • /
    • v.22 no.6
    • /
    • pp.387-392
    • /
    • 2007
  • Recently, microfluidic biochips for DNA microarray are providing a number of advantages such as, reduction in reagent volume, high-throughput parallel sample screening, automation of processing, and reduction in hybridization time. Particularly, the enhancement of target probe hybridization by decrease of hybridization time is an important aspect highlighting the advantage of microfluidic DNA microarray platform. Fundamental issues to overcome extremely slow diffusion-limited hybridization are based on physical, electrical or fluidic dynamical mixing technology. So far, there have been some reports on the enhancement of the hybridization with the microfluidic platforms. In this review, their principle, performance, and outreaching of the technology are overviewed and discussed for the implementation into many bio-applications.

Measurement of Thermal Diffusivity Using Deformation Angle Based on the Photothermal Displacement Method (광열변위법의 변형각을 이용한 열확산계수 측정)

  • Jeon, Pil-Su;Lee, Gwang-Jae;Yu, Jae-Seok;Park, Yeong-Mu;Lee, Jong-Hwa
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.302-309
    • /
    • 2002
  • A new method of measuring the thermal diffusivity of solid material at room temperature using photothermal displacement is proposed. The influence of the parameters, such as radius and modulation frequency of the pump beam and the sample thickness, was studied. In previous works, thermal diffusivity was determined by the deformation angle and phase angle as the relative position between the heating and probe beams. In this study, however, we proposed the new analysis method based on the real part of deformation angle as the relative position between two beams. From the zero-crossing position of real part of deformation angle with respect to the pump beam, the thermal diffusivity of the materials can be obtained. The experimental values for different samples obtained by applying the new method are in good agreement with the literature values.

Thermal Shock Behavior of TiN Coating Surface by a Pulse Laser Ablation Method

  • Noh, Taimin;Choi, Youngkue;Jeon, Min-Seok;Shin, Hyun-Gyoo;Lee, Heesoo
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.7
    • /
    • pp.539-544
    • /
    • 2012
  • Thermal shock behavior of TiN-coated SUS 304 substrate was investigated using a laser ablation method. By short surface ablation with a pulse Nd-YAG laser, considerable surface crack and spalling were observed, whereas there were few oxidation phenomena, such as grain growth of TiN crystallites, nucleation and growth of $TiO_2$ crystallites, which were observed from the coatings quenched from $700^{\circ}C$ in a chamber. The oxygen concentration of the ablated coating surface with the pulse laser also had a lower value than that of the quenched coating surface by Auger electron spectroscopy and electron probe micro analysis. These results were attributed to the fact that the properties of the pulse laser method have a very short heating time and so the diffusion time for oxidation was insufficient. Consequently, it was verified that the laser thermal shock test provides a way to evaluate the influence of the thermal shock load reduced oxidation effect.

Substituent Effects and Correlations of Electrochemical Behaviors with Molecular Orbital Calculation of Thioxantone DerivativesⅠ

  • 곽경도;서무룡;하광수;백우현
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.5
    • /
    • pp.527-530
    • /
    • 1998
  • This paper presents the electrochemistry and molecular orbital (MO) picture of a series of conformationally-restricted thioxantone derivatives. A series of $C_2-substituted$ thioxanthones were examined to probe the electronic influence of the substituent on the electrooxidation and electroreduction sites (i.e., on the electron densities at the 10-and 9-positions), respectively. In the presence of "electrophoric" groups such as C=O and S, characteristic electrochemical reduction and oxidation responses are observed. The electrochemical reaction was diffusion-controlled, because the $I_p/{\upsilon}^{1/2}$ ratio was constant for the anodic and cathodic wave of thioxantone derivatives. These substituent effects are presented in terms of correlations of oxidation (or reduction) potentials with the highest occupied molecular orbital (HOMO), or lowest unoccupied molecular orbital (LUMO) energies, respectively. There is good correlation between energies of the HOMO vs. $E_{pa}^{(+)}$ and energies of the LUMO vs. $E_{pc}^{(-)}$. Frontier Molecular Orbital (FMO) is changed by the functional group of thioxanthones. FMO energy level was offered us the information about the electron transfer direction, and the coefficient of FMO was offered the information about the electron transfer position. Sulfur atom has an important effect on oxidation potential, $E_{pa}^{(+)}$ and the carbonyl carbon has an important effect on reduction potential, $E_{pc}^{(-)}$. Therefore we were appreciated that the contribution of sulfur atom for the $E_{pa}^{(+)}$ and HOMO energies is larger than the contribution of carbonyl group for the $E_{pc}^{(-)}$ and LUMO energies.

A Study on the Electrical and Optical Properties of SnO2/Cu(Ni)/SnO2 Multi-Layer Structures Transparent Electrode According to Annealing Temperature (열처리 온도에 따른 SnO2/Cu(Ni)/SnO2 다층구조 투명전극의 전기·광학적 특성)

  • Jeong, Ji-Won;Kong, Heon;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.2
    • /
    • pp.134-140
    • /
    • 2019
  • Oxide ($SnO_2$)/metal alloy (Cu(Ni))/oxide ($SnO_2$) multilayer films were fabricated using the magnetron sputtering technique. The oxide and metal alloy were $SnO_2$ and Ni-doped Cu, respectively. The structural, optical, and electrical properties of the multilayer films were investigated using X-ray diffraction (XRD), ultraviolet-visible (UV-vis) spectrophotometry, and 4-point probe measurements, respectively. The properties of the $SnO_2/Cu(Ni)/SnO_2$ multilayer films were dependent on the thickness and Ni doping of the mid-layer film. Since Ni atoms inhibit the diffusion and aggregation of Cu atoms, the grain growth of Cu is delayed upon Ni addition. For $250^{\circ}C$, the Haccke's figure of merit (FOM) of the $SnO_2$ (30 nm)/Cu(Ni) (8 nm)/$SnO_2$ (30 nm) multilayer film was evaluated to be $0.17{\times}10^{-3}{\Omega}^{-1}$.

A Study on the Fabrication and Characteristics of ITO Thin Film Deposited by Magnetron Sputtering Method (마그네트론 스퍼터링법을 이용한 Indium-Tin Oxide 박막의 제작과 그 특성에 관한 연구)

  • 조길호;김여중;김성종;문경만;이명훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.61-69
    • /
    • 2000
  • Indium-Tin Oxide (ITO) films were prepared on the commercial glass substrate by the Magnetron Sputtering method. The target was a 90wt.% $In_2O_3$-10wt.% $SnO_2$with 99.99% purity. The ITO films deposited by changing the partial pressure of oxygen gas ($O_2$/(Ar+$O_2$)) of 2, 3 and 5% as well as by changing the substrate temperature of $300^{\circ}C$ or $500^{\circ}C$. The influence of substrate pre-annealing and pre-cleaning on the quality of ITO film were examined, in which the substrate temperature was $500^{\circ}C$ and oxygen partial pressure was 3%. The characteristics of films were examined by the 4-point probe, Hall effect measurement system, SEM, AFM, Spectrophotometer, and X-ray diffraction. The optimum ITO films have been obtained when the substrate temperature is $500^{\circ}C$ and oxygen partial pressure is 3%. At optimum condition, the film showed transmittance of 81%, sheet resistivity of $226\Omegatextrm{cm}^2$, resistivity($\rho$) of $5.4\times10^{-3}\Omega$cm, carrier concentration of $1.0\times10^{19}cm^{-3}$, and carrier mobility of $150textrm{cm}^2$Vsec. From XRD spectrum, c(222) plane was dominant in the case of substrate temperature at $300^{\circ}C$, without regarding to oxygen partial pressure. However, in the case of substrate temperature at $500^{\circ}C$, c(400) plane was grown together with c(222) plane, only for oxygen partial pressure of 2 and 3%. In both case of chemical and ultrasonic cleaning without pre-annealing the substrate, it showed much almost same sheet resistivity, resistivity($\rho$), transmittance, carrier concentration, and carrier mobility. In case of $500^{\circ}C$/60min pre-annealing before ITO film deposited, both transimittance and carrier mobility are better than no pre-annealing, because pre-annealing is supposed to remove alkari ions diffusion from substrate. ITO film deposited on the Corning 0080 sybstrate showed a little bit better sheet resistivity, resistivity($\rho$), transimittance, carrier concentration than the film deposited on commercial glass. But no differences between Corning substrate and pre-annealed commercial glass substrate are found.

  • PDF

Diffusion barrier properties of Mo compound thin films (Mo-화합물의 확산방지막으로서의 성질에 관한 연구)

  • 김지형;이용혁;권용성;염근영;송종한
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.2
    • /
    • pp.143-150
    • /
    • 1997
  • In this study, doffusion barrier properties of 1000 $\AA$ thick molybdenum compound(Mo, Mo-N, $MoSi_2$, Mo-Si-N) films were investigated using sheet resistance measurement, X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), Scanning electron mircoscopy(SEM), and Rutherford back-scattering spectrometry(RBS). Each barrier material was deposited by the dc magnetron sputtering and annealed at 300-$800^{\circ}C$ for 30 min in vacuum. Mo and MoSi2 barrier were faied at low temperatures due to Cu diffusion through grain boundaries and defects in Mo thin film and the reaction of Cu with Si within $MoSi_2$, respectively. A failure temperature could be raised to $650^{\circ}C$-30 min in the Mo barrier system and to $700^{\circ}C$-30 min in the Mo-silicide system by replacing Mo and $MoSi_2$ with Mo-N and Mo-Si-N, respectively. The crystallization temperature in the Mo-silicide film was raised by the addition of $N_2$. It is considered that not only the $N_2$, stuffing effect but also the variation of crystallization temperature affects the reaction of Cu with Si within Mo-silicide. It is found that Mo-Si-N is the more effective barrier than Mo, $MoSi_2$, or Mo-N to copper penetraion preventing Cu reaction with the substrate for $30^{\circ}C$min at a temperature higher than $650^{\circ}C$.

  • PDF

Seasonal Variations of the Heat Flux in Muddy Intertidal Sediments near the Jebu Island during the Ebb Tides in the West Coast of Korea (서해 제부도 해역의 간조시 갯벌 퇴적층내 지온 및 열수지의 계절변화)

  • Na, Jung-Yul;Yu, Sung-Hyup;Seo, Jang-Won
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.1
    • /
    • pp.1-9
    • /
    • 2000
  • Vertical temperature distributions in muddy intertidal sediments near the Jebu Island on the west coast of Korea were obtained during the period of ebb tide which occurred in day time. The observations of mud temperature were made with thermistor embedded probe at 2cm interval for 18cm-layer of sediment for five different months of the year. Temporal changes in the vertical profile of the sediment temperature are strongly depend on the air temperature, the previous time of flood tide and the time of ebb tide. Heat exchanges in the surface layer (0-2 cm) in terms of magnitude and direction are greater than and opposite to those in the deeper sediment layer (8-12 cm), respectively and do not show any significant seasonal variations. In general, the surface layer gains heat while the deeper layer loses the heat. By using the 1-D diffusion equation temporal vertical profiles of the sediment temperature were obtained and were compared with the observed ones. The results show that in the sediment layer below 4 cm-depth the heat transport is predominantly by molecular diffusion. The average magnitude of heat flux into the sediment layer (0-18 cm) during the ebb tide when the mudflats were exposed in the middle of the day were between 4.1 and $28.9\;W/m^2$.

  • PDF

Self-formation of Diffusion Barrier at the Interface between Cu-V Alloy and $SiO_2$

  • Mun, Dae-Yong;Park, Jae-Hyeong;Han, Dong-Seok;Gang, Yu-Jin;Seo, Jin-Gyo;Yun, Don-Gyu;Sin, So-Ra;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.256-256
    • /
    • 2012
  • Cu가 기존 배선물질인 Al을 대체함에 따라 resistance-capacitance delay와 electromigration (EM) 등의 문제들이 어느 정도 해결되었다. 그러나 지속적인 배선 폭의 감소로 배선의 저항 증가, EM 현상 강화 그리고 stability 악화 등의 문제가 지속적으로 야기되고 있다. 이를 해결하기 위한 방법으로 Cu alloy seed layer를 이용한 barrier 자가형성 공정에 대한 연구를 진행하였다. 이 공정은 Cu 합금을 seed layer로 사용하여 도금을 한 후 열처리를 통해 $SiO_2$와의 계면에서 barrier를 자가 형성시키는 공정이다. 이 공정은 매우 균일하고 얇은 barrier를 형성할 수 있고 별도의 barrier와 glue layer를 형성하지 않아 seed layer를 위한 공간을 추가로 확보할 수 있는 장점을 가지고 있다. 또한, via bottom에 barrier가 형성되지 않아 배선 전체 저항을 급격히 낮출 수 있다. 합금 물질로는 초기 Al이나 Mg에 대한 연구가 진행되었으나, 낮은 oxide formation energy로 인해 SiO2에 과도한 손상을 주는 문제점이 제기되었다. 최근 Mn을 합금 물질로 사용한 안정적인 barrier 형성 공정이 보고 되고 있다. 하지만, barrier 형성을 하기 위해 300도 이상의 열처리 온도가 필요하고 열처리 시간 또한 긴 단점이 있다. 본 실험에서는 co-sputtering system을 사용하여 Cu-V 합금을 형성하였고, barrier를 자가 형성을 위해 300도에서 500도까지 열처리 온도를 변화시키며 1시간 동안 열처리를 실시하였다. Cu-V 공정 조건 확립을 위해 AFM, XRD, 4-point probe system을 이용하여 표면 거칠기, 결정성과 비저항을 평가하였다. Cu-V 박막 내 V의 함량은 V target의 plasma power density를 변화시켜 조절 하였으며 XPS를 통해 분석하였다. 열처리 후 시편의 단면을 TEM으로 분석하여 Cu-V 박막과 $SiO_2$ 사이에 interlayer가 형성된 것을 확인 하였으며 EDS를 이용한 element mapping을 통해 Cu-V 내 V의 거동과 interlayer의 성분을 확인하였다. PVD Cu-V 박막은 기판 온도에 큰 영향을 받았고, 200도 이상에서는 Cu의 높은 표면에너지에 의한 agglomeration 현상으로 거친 표면을 가지는 박막이 형성되었다. 7.61 at.%의 V함량을 가지는 Cu-V 박막을 300도에서 1시간 열처리 한 결과 4.5 nm의 V based oxide interlayer가 형성된 것을 확인하였다. 열처리에 의해 Cu-V 박막 내 V은 $SiO_2$와의 계면과 박막 표면으로 확산하며 oxide를 형성했으며 Cu-V 박막 내 V 함량은 줄어들었다. 300, 400, 500도에서 열처리 한 결과 동일 조성과 열처리 온도에서 Cu-Mn에 의해 형성된 interlayer의 두께 보다 두껍게 성장했다. 이는 V의 oxide formation energy가 Mn 보다 작으므로 SiO2와의 계면에서 산화막 형성이 쉽기 때문으로 판단된다. 또한, $V^{+5}$이온 반경이 $Mn^{+2}$이온 반경보다 작아 oxide 내부에서 확산이 용이하며 oxide 박막 내에 여기되는 전기장이 더 큰 산화수를 가지는 V의 경우 더 크기 때문으로 판단된다.

  • PDF

An experimental study on turbulence characteristics of mixture and combustion characteristics of doubled jet burner flames (미연혼합기의 난류특성과 이중분류버너화염의 연소특성에 관한 실험적 연구)

  • Choe, Gyeong-Min;Jang, In-Gap;Choe, Byeong-Ryun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.2
    • /
    • pp.213-223
    • /
    • 1997
  • Premixed flame is better than diffusion flame to accomplish a high loading combustion. Since the turbulent characteristics of unburned mixture has a great influence on the flame structure, it is general that many researchers realize a high loading combustion with strengthening turbulent intensity of unburned mixture. Because turbulent premixed flame reacts efficiently on the condition of distributed reaction region, we made high turbulent premixed flame in the doubled impingement field. We investigated turbulent characteristics of unburned mixture with increasing shear force and visualized flames with direct and Schlieren photographs. And the combustion characteristics of flame was elucidated by instantaneous temperature measurement with a thermocouple, by ion currents with a micro electrostatic probe, by radical luminescence intensity and local equivalence ratio. Extremely strong turbulent of small scale is generated by impingement of mixture, and turbulent intensity of unburned mixture increased with the mean velocity. As a result of direct photographs, visible region of flame became longer due to increasing central direction flux. But as strengthed turbulent intensity, visible region of flame turned to shorter and reaction occurred efficiently. As strengthened turbulent intensity of mixture with increasing flux of central direction, maximum fluctuating temperature region moved to radial direction and fluctuation of temperature became lower. The reason is influx of central direction which caused flame zone to move toward radial direction, to maintain flame zone stable and to make flame scale smaller.