• Title/Summary/Keyword: probabilistic scheme

Search Result 163, Processing Time 0.021 seconds

Adaptive Probabilistic Neural Network for Prediction of Compressive Strength of Concrete (콘크리트 압축강도 추정을 위한 적응적 확률신경망 기법)

  • 김두기;이종재;장성규
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.542-549
    • /
    • 2004
  • The compressive strength of concrete is commonly used criterion in producing concrete. However, the tests on the compressive strength are complicated and time-consuming. More importantly, it is too late to make improvement even if the test result does not satisfy the required strength, since the test is usually performed at the 28th day after the placement of concrete at the construction site. Therefore, accurate and realistic strength estimation before the placement of concrete is being highly required. In this study, the estimation of the compressive strength of concrete was performed by probabilistic neural network (PNN) on the basis of concrete mix proportions. The estimation performance of PNN was improved by considering the correlation between input data and targeted output value. Adaptive probabilistic neural network (APNN) was proposed to automatically calculate the smoothing parameter in the conventional PNN by using the scheme of dynamic decay adjustment algorithm. The conventional PNN and APNN were applied to predict the compressive strength of concrete using actual test data of a concrete company. APNN showed better results than the conventional PNN in predicting the compressive strength of concrete.

  • PDF

GMM-KL Framework for Indoor Scene Matching (실내 환경 이미지 매칭을 위한 GMM-KL프레임워크)

  • Kim, Jun-Young;Ko, Han-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.61-63
    • /
    • 2005
  • Retreiving indoor scene reference image from database using visual information is important issue in Robot Navigation. Scene matching problem in navigation robot is not easy because input image that is taken in navigation process is affinly distorted. We represent probabilistic framework for the feature matching between features in input image and features in database reference images to guarantee robust scene matching efficiency. By reconstructing probabilistic scene matching framework we get a higher precision than the existing feaure-feature matching scheme. To construct probabilistic framework we represent each image as Gaussian Mixture Model using Expectation Maximization algorithm using SIFT(Scale Invariant Feature Transform).

  • PDF

Application of lattice probabilistic neural network for active response control of offshore structures

  • Kim, Dong Hyawn;Kim, Dookie;Chang, Seongkyu
    • Structural Engineering and Mechanics
    • /
    • v.31 no.2
    • /
    • pp.153-162
    • /
    • 2009
  • The reduction of the dynamic response of an offshore structure subjected to wind-generated random ocean waves is of extreme significance in the aspects of serviceability, fatigue life and safety of the structure. In this study, a new neuro-control scheme is applied to the vibration control of a fixed offshore platform under random wave loads to examine the applicability of the proposed method. It is called the Lattice Probabilistic Neural Network (LPNN), as it utilizes lattice pattern of state vectors as the training data of PNN. When control results of the LPNN are compared with those of the NN and PNN, LPNN showed better performance in effectively suppressing the structural responses in a shorter computational time.

A probabilistic framework for drought forecasting using hidden Markov models aggregated with the RCP8.5 projection

  • Chen, Si;Kwon, Hyun-Han;Kim, Tae-Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.197-197
    • /
    • 2016
  • Forecasting future drought events in a region plays a major role in water management and risk assessment of drought occurrences. The creeping characteristics of drought make it possible to mitigate drought's effects with accurate forecasting models. Drought forecasts are inevitably plagued by uncertainties, making it necessary to derive forecasts in a probabilistic framework. In this study, a new probabilistic scheme is proposed to forecast droughts, in which a discrete-time finite state-space hidden Markov model (HMM) is used aggregated with the Representative Concentration Pathway 8.5 (RCP) precipitation projection (HMM-RCP). The 3-month standardized precipitation index (SPI) is employed to assess the drought severity over the selected five stations in South Kore. A reversible jump Markov chain Monte Carlo algorithm is used for inference on the model parameters which includes several hidden states and the state specific parameters. We perform an RCP precipitation projection transformed SPI (RCP-SPI) weight-corrected post-processing for the HMM-based drought forecasting to derive a probabilistic forecast that considers uncertainties. Results showed that the HMM-RCP forecast mean values, as measured by forecasting skill scores, are much more accurate than those from conventional models and a climatology reference model at various lead times over the study sites. In addition, the probabilistic forecast verification technique, which includes the ranked probability skill score and the relative operating characteristic, is performed on the proposed model to check the performance. It is found that the HMM-RCP provides a probabilistic forecast with satisfactory evaluation for different drought severity categories, even with a long lead time. The overall results indicate that the proposed HMM-RCP shows a powerful skill for probabilistic drought forecasting.

  • PDF

Estimation of Concrete Strength Using Improved Probabilistic Neural Network Method

  • Kim Doo-Kie;Lee Jong-Jae;Chang Seong-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.1075-1084
    • /
    • 2005
  • The compressive strength of concrete is commonly used criterion in producing concrete. However, the tests on the compressive strength are complicated and time-consuming. More importantly, it is too late to make improvement even if the test result does not satisfy the required strength, since the test is usually performed at the 28th day after the placement of concrete at the construction site. Therefore, accurate and realistic strength estimation before the placement of concrete is being highly required. In this study, the estimation of the compressive strength of concrete was performed by probabilistic neural network(PNN) on the basis of concrete mix proportions. The estimation performance of PNN was improved by considering the correlation between input data and targeted output value. Improved probabilistic neural network was proposed to automatically calculate the smoothing parameter in the conventional PNN by using the scheme of dynamic decay adjustment (DDA) algorithm. The conventional PNN and the PNN with DDA algorithm(IPNN) were applied to predict the compressive strength of concrete using actual test data of two concrete companies. IPNN showed better results than the conventional PNN in predicting the compressive strength of concrete.

Development of a Knowledge Representation Scheme and Diagnosis Mechanism for Heterogeneous Distributed Fault Diagnosis (이종분산 고장 진단을 위한 지식표현 방법 및 진단 방법의 개발)

  • 안영애;박종희
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.12
    • /
    • pp.1687-1696
    • /
    • 1995
  • An integrated fault diagnosis system for heterogeneous manufacturing environments is developed. This system has a contrast with existing diagnosis systems in the respect that they are mostly for diagnosing faults on individual machines. In addition to the usual (e.g., audio, electrical) diagnostic signals, the characteristics of products from the machines are considered as the unifying diagnostic parameters among heterogeneous machines in the diagnosis. The system is composed of a knowledge representation scheme and a diagnostic query processing mechanism. Its knowledge representation scheme allows the diagnostic knowledges from heterogeneous unit diagnostic systems to be uniformly expressed in terms of the causal relations among relevant data items. It is flexible in the sense that causes for one relation can be effects for another may be reflected on our knowledge representation scheme. The diagnosis mechanism is based on a probabilistic inferencing method. This probablistic diagnosis mechanism provides more general diagnosis than existing ones in that it accommodates multiple causes and takes complication among causes into account. These scheme and mechanism are applied to a typical example to demonstrate how our system works.

  • PDF

Reverse link rate control for high-speed wireless systems based on traffic load prediction (고속 무선통신 시스템에서 트래픽 부하 예측에 의한 역방향 전송속도 제어)

  • Yeo, Woon-Young
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.11
    • /
    • pp.15-22
    • /
    • 2008
  • The cdma2000 1xEV-DO system controls the data rates of mobile terminals based on a binary overload indicator from the base station and a simple probabilistic model. However, this control scheme has difficulty in predicting the future behavior of mobile terminals due to a probabilistic uncertainty and has no reliable means of suppressing the traffic overload, which may result in performance degradation of CDMA systems that have interference-limited capacity. This Paper proposes a new traffic control scheme that controls the data rates of mobile terminals effectively by predicting the future traffic load and adjusting the forward-link control channel. The proposed scheme is analyzed by modeling it as a multi-dimensional Markov process and compared with conventional schemes. The numerical results show that the maximum cell throughput of the proposed scheme is much higher than those of the conventional schemes.

Probabilistic Power-saving Scheduling of a Real-time Parallel Task on Discrete DVFS-enabled Multi-core Processors (이산적 DVFS 멀티코어 프로세서 상에서 실시간 병렬 작업을 위한 확률적 저전력 스케쥴링)

  • Lee, Wan Yeon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.2
    • /
    • pp.31-39
    • /
    • 2013
  • In this paper, we propose a power-efficient scheduling scheme that stochastically minimizes the power consumption of a real-time parallel task while meeting the deadline on multicore processors. The proposed scheme applies the parallel processing that executes a task on multiple cores concurrently, and activates a part of all available cores with unused cores powered off, in order to save power consumption. It is proved that the proposed scheme minimizes the mean power consumption of a real-time parallel task with probabilistic computation amount on DVFS-enabled multicore processors with a finite set of discrete clock frequencies. Evaluation shows that the proposed scheme saves up to 81% power consumption of the previous method.

Fuzzy based Verification Node Decision Method for Dynamic Environment in Probabilistic Voting-based Filtering Scheme (확률적 투표기반 여과기법에서 가변적 환경을 위한 퍼지 기반 검증 노드 결정 기법)

  • Lee, Jae-Kwan;Nam, Su-Man;Cho, Tae-Ho
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2013.07a
    • /
    • pp.11-13
    • /
    • 2013
  • 무선 센서 네트워크는 개방된 환경에서 무작위로 배치되어 악의적인 공격자들에게 쉽게 노출된다. 센서 노드는 한정된 에너지 자원과 손쉽게 훼손된다는 단점을 통해 허위 보고서와 투표 삽입 공격이 발생한다. Li와 Wu는 두 공격을 대응하기 위해 확률적 투표기반 여과기법을 제안하였다. 확률적 투표기반 여과기법은 고정적인 검증 경로를 결정하기 때문에 특정 노드의 에너지 자원고갈 위험이 있다. 본 논문에서는 센서 네트워크에서 보고서 여과 확률 향상을 위하여 퍼지 시스템을 기반으로 다음 노드 선택을 약 6% 효율적인 경로 선택 방법을 제안한다. 제안 기법은 전달 경로 상의 노드 중 상태정보가 높은 노드를 검증 노드로 선택하고, 선택된 검증 노드는 허용 범위 경계 값을 기준으로 공격 유형을 판별하고 여과한다. 실험결과를 통해 제안기법은 기존기법과 비교하였을 때 에너지 효율이 향상되었다.

  • PDF

Vehicle-Tracking with Distorted Measurement via Fuzzy Interacting Multiple Model (Fuzzy Interacting Multiple Model을 이용한 관측왜곡 시스템의 차량추적)

  • Park, Seong-Keun;Hwang, Jae-Pil;Rou, Kyung-Jin;Kim, Eun-Tai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.863-870
    • /
    • 2008
  • In this paper, a new filtering scheme for vehicle tracking with distorted measurement is presented. This filtering scheme is essential for the implementation of the adaptive cruise control (ACC) system. The proposed method combines the IMM and the probabilistic fuzzy model and is named as the Fuzzy IMM (FIMM). The IMM is employed to recognize the intention of the preceding vehicle. The probabilistic furry model is introduced to compensate the distortion of the range sensor. Finally, a computer simulation is performed to illustrate the validity of the suggested algorithms.