• 제목/요약/키워드: probabilistic neural network

검색결과 132건 처리시간 0.022초

임베디드 리눅스 기반의 지문 인식 시스템 구현 (Implementation of Fingerprint Cognition System Based on Embedded LINUX)

  • 배은대;김정하;남부희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.385-387
    • /
    • 2004
  • In this paper, we have designed a fingerprint cognition system based on the embedded Linux. The proposed algorithm in this paper use the wavelet transform to derive the special feature vector from the captured fingerprint and a probabilistic neural network is used to compare the feature vectors for the fingerprints. The system consists of server PC based on the Linux and the client based on the embedded Linux. The client is a Tynux box-x board using the PXA-255 CPU. For the acquisition of the fingerprint image, we use d the AS-S2 semiconductor sensor. The system is likely to be used to develop a police inspection system.

  • PDF

Robustness of Data Mining Tools under Varting Levels of Noise:Case Study in Predicting a Chaotic Process

  • Kim, Steven H.;Lee, Churl-Min;Oh, Heung-Sik
    • 한국경영과학회지
    • /
    • 제23권1호
    • /
    • pp.109-141
    • /
    • 1998
  • Many processes in the industrial realm exhibit sstochastic and nonlinear behavior. Consequently, an intelligent system must be able to nonlinear production processes as well as probabilistic phenomena. In order for a knowledge based system to control a manufacturing processes as well as probabilistic phenomena. In order for a knowledge based system to control manufacturing process, an important capability is that of prediction : forecasting the future trajectory of a process as well as the consequences of the control action. This paper examines the robustness of data mining tools under varying levels of noise while predicting nonlinear processes, includinb chaotic behavior. The evaluated models include the perceptron neural network using backpropagation (BPN), the recurrent neural network (RNN) and case based reasoning (CBR). The concepts are crystallized through a case study in predicting a chaotic process in the presence of various patterns of noise.

  • PDF

Implementation of Fingerprint Recognition System Based on the Embedded LINUX

  • Bae, Eun-Dae;Kim, Jeong-Ha;Nam, Boo-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1550-1552
    • /
    • 2005
  • In this paper, we have designed a Fingerprint Recognition System based on the Embedded LINUX. The fingerprint is captured using the AS-S2 semiconductor sensor. To extract a feature vector we transform the image of the fingerprint into a column vector. The image is row-wise filtered with the low-pass filter of the Haar wavelet. The feature vectors of the different fingerprints are compared by computing with the probabilistic neural network the distance between the target feature vector and the stored feature vectors in advance. The system implemented consists of a server PC based on the LINUX and a client based on the Embedded LINUX. The client is a Tynux box-x board using a PXA-255 CPU. The algorithm is simple and fast in computing and comparing the fingerprints.

  • PDF

임베디드 리눅스 기반의 지문 인식 시스템 구현 (Implementation of Fingerprint Cognition System Based on the Embedded LINUX)

  • 배은대;김정하;남부희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.204-206
    • /
    • 2005
  • In this paper, we have designed a Fingerprint Recognition System based on the Embedded LINUX. The fingerprint is captured using the AS-S2 semiconductor sensor. To extract a feature vector we transform the image of t10he fingerprint into a column vector. The image is row-wise filtered with the low-pass filter of the Haar wavelet. The feature vectors of the different fingerprints are compared by computing with the probabilistic neural network the distance between the target feature vector and the stored feature vectors in advance. The system implemented consists of a server PC based on the LINUX and a client based on the Embedded LINUX. The client is a Tynux box-x board using a PXA-255 CPU. The algorithm is simple and fast in computing and comparing the fingerprints.

  • PDF

능동소나 표적 인식을 위한 신호합성 및 특징추출 (Signal Synthesis and Feature Extraction for Active Sonar Target Classification)

  • 어윤;석종원
    • 한국멀티미디어학회논문지
    • /
    • 제18권1호
    • /
    • pp.9-16
    • /
    • 2015
  • Various approaches to process active sonar signals are under study, but there are many problems to be considered. The sonar signals are distorted by the underwater environment, and the spatio-temporal and spectral characteristics of active sonar signals change in accordance with the aspect of the target even though they come from the same one. And it has difficulties in collecting actual underwater data. In this paper, we synthesized active target echoes based on ray tracing algorithm using target model having 3-dimensional highlight distribution. Then, Fractional Fourier transform was applied to synthesized target echoes to extract feature vector. Recognition experiment was performed using probabilistic neural network classifier.

확률 신경망이론을 사용한 콘크리트 압축강도 추정 (Prediction of Compressive Strength of Concrete using Probabilistic Neural Networks)

  • 김두기;이종재;장성규;임병용
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 추계 학술발표회논문집
    • /
    • pp.311-316
    • /
    • 2003
  • The compressive strength of concrete is a criterion to produce concrete. However, the tests on the compressive strength are complicated and time-consuming. More importantly, it is too late to make improvement even if the test result does not satisfy the required strength, since the test is usually performed at the 28th day after the placement of Concrete at the Construction site. Therefore, strength prediction before the placement of concrete is highly desirable. This study presents the probabilistic technique for predicting the compressive strength of concrete on the basis of concrete mix proportions. The estimation of the strength is based on the probabilistic neural network, and show that the present methods are very efficient and reasonable in predicting the compressive strength of concrete probabilistically.

  • PDF

다층 신경망과 면역 알고리즘을 이용한 로봇 매니퓰레이터 제어 시스템 설계 (On Designing a Robot Manipulator Control System Using Multilayer Neural Network and Immune Algorithm)

  • 서재용;김성현;전홍태
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1997년도 추계학술대회 학술발표 논문집
    • /
    • pp.267-270
    • /
    • 1997
  • As an approach to develope a control system with robustness in changing control environment conditions, this paper will propose a robot manipulator control system using multilayer neural network and immune algorithm. The proposed immune algorithm which has the characteristics of immune system such as distributed and anomaly detection, probabilistic detection, learning and memory, consists of the innate immune algorithm and the adaptive immune algorithm. We will demonstrate the effectiveness of the proposed control system with simulations of a 2-link robot manipulator.

  • PDF

초음파 비파괴 검사기법에 의한 용접결함 분류성능 비교 (Performance Comparison of Welding Flaws Classification using Ultrasonic Nondestructive Inspection Technique)

  • 김재열;유신;김창현;송경석;양동조;김유홍
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 추계학술대회 논문집
    • /
    • pp.280-285
    • /
    • 2004
  • In this study, we made a comparative study of backpropagation neural network and probabilistic neural network and bayesian classifier and perceptron as shape recognition algorithm of welding flaws. For this purpose, variables are applied the same to four algorithms. Here, feature variable is composed of time domain signal itself and frequency domain signal itself. Through this process, we comfirmed advantages/disadvantages of four algorithms and identified application methods of four algorithms.

  • PDF

Fragility assessment of RC bridges using numerical analysis and artificial neural networks

  • Razzaghi, Mehran S.;Safarkhanlou, Mehrdad;Mosleh, Araliya;Hosseini, Parisa
    • Earthquakes and Structures
    • /
    • 제15권4호
    • /
    • pp.431-441
    • /
    • 2018
  • This study provides fragility-based assessment of seismic performance of reinforced concrete bridges. Seismic fragility curves were created using nonlinear analysis (NA) and artificial neural networks (ANNs). Nonlinear response history analyses were performed, in order to calculate the seismic performances of the bridges. To this end, 306 bridge-earthquake cases were considered. A multi-layered perceptron (MLP) neural network was implemented to predict the seismic performances of the selected bridges. The MLP neural networks considered herein consist of an input layer with four input vectors; two hidden layers and an output vector. In order to train ANNs, 70% of the numerical results were selected, and the remained 30% were employed for testing the reliability and validation of ANNs. Several structures of MLP neural networks were examined in order to obtain suitable neural networks. After achieving the most proper structure of neural network, it was used for generating new data. A total number of 600 new bridge-earthquake cases were generated based on neural simulation. Finally, probabilistic seismic safety analyses were conducted. Herein, fragility curves were developed using numerical results, neural predictions and the combination of numerical and neural data. Results of this study revealed that ANNs are suitable tools for predicting seismic performances of RC bridges. It was also shown that yield stresses of the reinforcements is one of the important sources of uncertainty in fragility analysis of RC bridges.

Splice Site Detection Using a Combination of Markov Model and Neural Network

  • M Abdul Baten, A.K.;Halgamuge, Saman K.;Wickramarachchi, Nalin;Rajapakse, Jagath C.
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2005년도 BIOINFO 2005
    • /
    • pp.167-172
    • /
    • 2005
  • This paper introduces a method which improves the performance of the identification of splice sites in the genomic DNA sequence of eukaryotes. This method combines a low order Markov model in series with a neural network for the predictions of splice sites. The lower order Markov model incorporates the biological knowledge surrounding the splice sites as probabilistic parameters. The Neural network takes the Markov encoded parameters as the inputs and produces the prediction. Two types of neural networks are used for the comparison. This method reduces the computational complexity and shows encouraging accuracy in the predictions of splice sites when applied to several standard splice site dataset.

  • PDF