• 제목/요약/키워드: probabilistic method

검색결과 1,545건 처리시간 0.025초

A methodology to evaluate corroded RC structures using a probabilistic damage approach

  • Coelho, Karolinne O.;Leonel, Edson D.;Florez-Lopez, Julio
    • Computers and Concrete
    • /
    • 제29권1호
    • /
    • pp.1-14
    • /
    • 2022
  • Several aspects influence corrosive processes in reinforced concrete (RC) structures such as environmental conditions, structural geometry and mechanical properties. Since these aspects present large randomnesses, probabilistic models allow a more accurate description of the corrosive phenomena. Besides, the definition of limit states in the reliability assessment requires a proper mechanical model. In this context, this study proposes a straightforward methodology for the mechanical-probabilistic modelling of RC structures subjected to reinforcements' corrosion. An improved damage approach is proposed to define the limit states for the probabilistic modelling, considering three main degradation phenomena: concrete cracking, rebar yielding and rebar corrosion caused either by chloride or carbonation mechanisms. The stochastic analysis is evaluated by the Monte Carlo simulation method due to the computational efficiency of the Lumped Damage Model for Corrosion (LDMC). The proposed mechanical-probabilistic methodology is implemented in a computational framework and applied to the analysis of a simply supported RC beam and a 2D RC frame. Curves illustrate the probability of failure evolution over a service life of 50 years. Moreover, the proposed model allows drawing the probability of failure map and then identifying the critical failure path for progressive collapse analysis. Collapse path changes caused by the corrosion phenomena are observed.

확률적인 소실점 추정 기법에 기반한 강인한 송전선 검출 방법 (A Robust Power Transmission Lines Detection Method Based on Probabilistic Estimation of Vanishing Point)

  • 유주한;김동환;이석;박성기
    • 로봇학회논문지
    • /
    • 제10권1호
    • /
    • pp.9-15
    • /
    • 2015
  • We present a robust power transmission lines detection method based on vanishing point estimation. Vanishing point estimation can be helpful to detect power transmission lines because parallel lines converge on the vanishing point in a projected 2D image. However, it is not easy to estimate the vanishing point correctly in an image with complex background. Thus, we first propose a vanishing point estimation method on power transmission lines by using a probabilistic voting procedure based on intersection points of line segments. In images obtained by our system, power transmission lines are located in a fan-shaped area centered on this estimated vanishing point, and therefore we select the line segments that converge to the estimated vanishing point as candidate line segments for power transmission lines only in this fan-shaped area. Finally, we detect the power transmission lines from these candidate line segments. Experimental results show that the proposed method is robust to noise and efficient to detect power transmission lines.

성능 모멘트 적분법을 이용한 제작공차에 의해 발생하는 스피커 성능함수의 확률분포 특성 예측 (Prediction of Probabilistic Distribution of a Loudspeaker's Performance Due to Manufacturing Tolerances by Performance Moment Integration Method)

  • 강병수;백종현;김동훈
    • 한국자기학회지
    • /
    • 제26권3호
    • /
    • pp.81-85
    • /
    • 2016
  • 본 논문에서는 제작공차에 의해 전기기기 및 소자 관련 제품에서 발생하는 성능함수의 변동특성을 예측하기 위해서 성능 모멘트 적분법을 도입하였다. 성능함수의 확률론적 분포특성을 판단할 수 있는 평균과 분산을 효율적으로 계산하기 위해서 정규분포로 변환된 성능함수 공간과 혼합형 평균치 기법을 채용하였다. 제안된 기법의 수치적인 효율성과 정밀도를 검증하기 위해서 간단한 수학예제와 스피커 모델에 적용하여 예측된 성능함수의 확률분포 특성을 차원감소법과 몬테카를로 수치모사법의 결과와 비교하였다.

Chloride diffusivity of concrete: probabilistic characteristics at meso-scale

  • Pan, Zichao;Ruan, Xin;Chen, Airong
    • Computers and Concrete
    • /
    • 제13권2호
    • /
    • pp.187-207
    • /
    • 2014
  • This paper mainly discusses the influence of the aggregate properties including grading, shape, content and distribution on the chloride diffusion coefficient, as well as the initiation time of steel corrosion from a probabilistic point of view. Towards this goal, a simulation method of random aggregate structure (RAS) based on elliptical particles and a procedure of finite element analysis (FEA) at meso-scale are firstly developed to perform the analysis. Next, the chloride diffusion coefficient ratio between concrete and cement paste $D_{app}/D_{cp}$ is chosen as the index to represent the effect of aggregates on the chloride diffusion process. Identification of the random distribution of this index demonstrates that it can be viewed as actually having a normal distribution. After that, the effect of aggregates on $D_{app}/D_{cp}$ is comprehensively studied, showing that the appropriate properties of aggregates should be decided by both of the average and the deviation of $D_{app}/D_{cp}$. Finally, a case study is conducted to demonstrate the application of this mesoscopic method in predicting the initiation time of steel corrosion in reinforced concrete (RC) structures. The mesoscopic probabilistic method developed in this paper can not only provide more reliable evidences on the proper grading and shape of aggregates, but also play an important role in the probability-based design method.

신뢰성 설계를 위한 엔진 실린더 블록과 메인 보어의 유한요소해석 (Finite Element Analysis of Engine Cylinder Block and Main Bore for Reliable Design)

  • 양철호;한문식
    • 한국자동차공학회논문집
    • /
    • 제13권4호
    • /
    • pp.39-48
    • /
    • 2005
  • Finite element analyses have been performed for the purpose of obtaining the robust and reliable design of engine cylinder block. Fatigue under high cycle operating loads is a primary concern and is evaluated by a probabilistic method. The robust and reliable design by a probabilistic method can provide satisfactory design conditions for the performance of the system under the influence of noise factors. Therefore, the design by this method will be desensitized to the uncontrollable noise factors. The simple methodology evaluates the distortion of main bore is proposed for the purpose of maintaining a well-controlled clearance between the crankshaft and main bores. The proposed methodology has proven a capability of predicting the distortion of the main bore under assembly, thermal, and firing loads. The calculated results are correlated well with the experimental ones.

A Probabilistic Analysis for Periodicity of Real-time Tasks

  • Delgado, Raimarius;Choi, Byoung Wook
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제13권1호
    • /
    • pp.134-142
    • /
    • 2021
  • This paper proposes a probabilistic method in analyzing timing measurements to determine the periodicity of real-time tasks. The proposed method fills a gap in existing techniques, which either concentrate on the estimation of worst-case execution times, or do not consider the stochastic behavior of the real-time scheduler. Our method is based on the Z-test statistical analysis which calculates the probability of the measured period to fall within a user-defined standard deviation limit. The distribution of the measured period should satisfy two conditions: its center (statistical mean) should be equal to the scheduled period of the real-time task, and that it should be symmetrical with most of the samples focused on the center. To ensure that these requirements are met, a data adjustment process, which omits any outliers in the expense of accuracy, is presented. Then, the Z-score of the distribution according to the user-defined deviation limit provides a probability which determines the periodicity of the real-time task. Experiments are conducted to analyze the timing measurements of real-time tasks based on real-time Linux extensions of Xenomai and RT-Preempt. The results indicate that the proposed method is able to provide easier interpretation of the periodicity of real-time tasks which are valuable especially in comparing the performance of various real-time systems.

Risk-informed design optimization method and application in a lead-based research reactor

  • Jiaqun Wang;Qianglong Wang;Jinrong Qiu;Jin Wang;Fang Wang;Yazhou Li
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.2047-2052
    • /
    • 2023
  • Risk-informed approach has been widely applied in the safety design, regulation, and operation of nuclear reactors. It has been commonly accepted that risk-informed design optimization should be used in the innovative reactor designs to make nuclear system highly safe and reliable. In spite of the risk-informed approach has been used in some advanced nuclear reactors designs, such as Westinghouse IRIS, Gen-IV sodium fast reactors and lead-based fast reactors, the process of risk-informed design of nuclear reactors is hardly to carry out when passive system reliability should be integrated in the framework. A practical method for new passive safety reactors based on probabilistic safety assessment (PSA) and passive system reliability analyze linking is proposed in this paper. New three-dimension frequency-consequence curve based on risk concept with three variables is used in this method. The proposed method has been applied to the determination optimization of design options selection in a 10 MWth lead-based research reactor(LR) to obtain one optimized system design in conceptual design stage, using the integrated reliability and probabilistic safety assessment program RiskA, and the computation resources and time consumption in this process was demonstrated reasonable and acceptable.

환경피로균열 열화특성 예측을 위한 확률론적 접근 (Probabilistic Approach for Predicting Degradation Characteristics of Corrosion Fatigue Crack)

  • 이태현;윤재영;류경하;박종원
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제18권3호
    • /
    • pp.271-279
    • /
    • 2018
  • Purpose: Probabilistic safety analysis was performed to enhance the safety and reliability of nuclear power plants because traditional deterministic approach has limitations in predicting the risk of failure by crack growth. The study introduces a probabilistic approach to establish a basis for probabilistic safety assessment of passive components. Methods: For probabilistic modeling of fatigue crack growth rate (FCGR), various FCGR tests were performed either under constant load amplitude or constant ${\Delta}K$ conditions by using heat treated X-750 at low temperature with adequate cathodic polarization. Bayesian inference was employed to update uncertainties of the FCGR model using additional information obtained from constant ${\Delta}K$ tests. Results: Four steps of Bayesian parameter updating were performed using constant ${\Delta}K$ test results. The standard deviation of the final posterior distribution was decreased by a factor of 10 comparing with that of the prior distribution. Conclusion: The method for developing a probabilistic crack growth model has been designed and demonstrated, in the paper. Alloy X-750 has been used for corrosion fatigue crack growth experiments and modeling. The uncertainties of parameters in the FCGR model were successfully reduced using the Bayesian inference whenever the updating was performed.

Probabilistic seismic assessment of structures considering soil uncertainties

  • Hamidpour, Sara;Soltani, Masoud;Shabdin, Mojtaba
    • Earthquakes and Structures
    • /
    • 제12권2호
    • /
    • pp.165-175
    • /
    • 2017
  • This paper studies soil properties uncertainty and its implementation in the seismic response evaluation of structures. For this, response sensitivity of two 4- and 12-story RC shear walls to the soil properties uncertainty by considering soil structure interaction (SSI) effects is investigated. Beam on Nonlinear Winkler Foundation (BNWF) model is used for shallow foundation modeling and the uncertainty of soil properties is expanded to the foundation stiffness and strength parameters variability. Monte Carlo (MC) simulation technique is employed for probabilistic evaluations. By investigating the probabilistic evaluation results it's observed that as the soil and foundation become stiffer, the soil uncertainty is found to be less important in influencing the response variability. On the other hand, the soil uncertainty becomes more important as the foundation-structure system is expected to experience nonlinear behavior to more sever degree. Since full This paper studies soil properties uncertainty and its implementation in the seismic response evaluation of structures. For this, response sensitivity of two 4- and 12-story RC shear walls to the soil properties uncertainty by considering soil structure interaction (SSI) effects is investigated. Beam on Nonlinear Winkler Foundation (BNWF) model is used for shallow foundation modeling and the uncertainty of soil properties is expanded to the foundation stiffness and strength parameters variability. Monte Carlo (MC) simulation technique is employed for probabilistic evaluations. By investigating the probabilistic evaluation results it's observed that as the soil and foundation become stiffer, the soil uncertainty is found to be less important in influencing the response variability. On the other hand, the soil uncertainty becomes more important as the foundation-structure system is expected to experience nonlinear behavior to more sever degree. Since full probabilistic analysis methods like MC commonly are very time consuming, the feasibility of simple approximate methods' application including First Order Second Moment (FOSM) method and ASCE41 proposed approach for the soil uncertainty considerations is investigated. By comparing the results of the approximate methods with the results obtained from MC, it's observed that the results of both FOSM and ASCE41 methods are in good agreement with the results of MC simulation technique and they show acceptable accuracy in predicting the response variability.

확률적 연결관계 평가기법(PLET)에 의한 사업공기 추정 (Estimation of Project Duration by Probabilistic Linkage Evaluation Technique (PLET))

  • 김선규
    • 한국건설관리학회논문집
    • /
    • 제15권6호
    • /
    • pp.44-52
    • /
    • 2014
  • 일반적으로 공정계획을 수립할 때 가장 어려운 업무가 작업별 공기와 작업간 연결관계를 추정하는 것이다. 왜냐하면 사업에 잠재된 위험요인들로 인해 작업공기와 작업간 연결관계가 불확실성에 노출될 가능성이 높기 때문이다. 따라서 사업공기를 확률적으로 추정할 경우 작업공기에 대한 확률적인 추정뿐만 아니라 작업간 연결관계에 대한 확률적인 추정도 반드시 고려해야 한다. 확률적으로 사업공기를 추정하는 대표적인 방법인 PERT기법은 작업간 연결관계를 'FS0'로 확정하고 작업공기만을 확률적으로 추정하므로 작업관계의 불확실성을 고려할 수 없었다. 본 연구에서는 BDM기법의 연결관계를 확률적으로 추정함으로써 전체 사업공기를 확률적으로 추정하는 새로운 방법인 PLET기법을 제안하고, 이를 통해 사업공기에 대한 보다 폭넓고 다양한 확률적인 정보를 제공하는데 목적이 있다.