• Title/Summary/Keyword: probabilistic edge map

Search Result 3, Processing Time 0.019 seconds

A method for ultrasound image edge enhancement by using Probabilistic edge map (초음파 진단영상 대조도 개선을 위한 확률 경계 맵을 이용한 연구)

  • Choi, Woo-hyuk;Park, Won-hwan;Park, Sungyun
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.20 no.1
    • /
    • pp.37-44
    • /
    • 2016
  • Ultrasonic imaging is the most widely modality among modern imaging device for medical diagnosis. Nevertheless, medical ultrasound images suffer from speckle noise and low contrast. In this paper, we propose probabilistic edge map for ultrasound image edge enhancement using automatic alien algorithm. The proposed method used applied speckle reduced ultrasound imaging for edge improvement using sequentially acquired ultrasound imaging. To evaluate the performance of method, the similarity between the reference and edge enhanced image was measured by quantity analysis. The experimental results show that the proposed method considerably improves the image quality with region edge enhancement.

A Study on the Depth Map using Single Edge (단일 엣지를 이용한 깊이 정보에 관한 연구)

  • Kim, Young-Seop;Song, Eung-Yeol
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.2
    • /
    • pp.123-126
    • /
    • 2010
  • An implementation of modified stereo matching using efficient belief propagation (BP) algorithm is presented in this paper. We do recommend the use of the simple sobel, prewitt edge operator. The application of B band sobel edge operator over image demonstrates result with somewhat noisy (distinct border). When we adopt the only MRF + BP algorithm, however, borders cannot be distinguished due to that the message functions in the BP algorithm is just the mechanism which passes energy data to the only large gap of each Message functions In order to address the abovementioned disadvantageous phenomenon, we use the sobel edge operator + MRF + BP algorithm to distinguish the border that is located between the similar message data. Using edge information, the result shows that our proposed process diminishes the propagation of wrong probabilistic information. The enhanced result is due to that our proposed method effectively reduced errors incurred by ambiguous scene properties.

Bayesian Sensor Fusion of Monocular Vision and Laser Structured Light Sensor for Robust Localization of a Mobile Robot (이동 로봇의 강인 위치 추정을 위한 단안 비젼 센서와 레이저 구조광 센서의 베이시안 센서융합)

  • Kim, Min-Young;Ahn, Sang-Tae;Cho, Hyung-Suck
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.4
    • /
    • pp.381-390
    • /
    • 2010
  • This paper describes a procedure of the map-based localization for mobile robots by using a sensor fusion technique in structured environments. A combination of various sensors with different characteristics and limited sensibility has advantages in view of complementariness and cooperation to obtain better information on the environment. In this paper, for robust self-localization of a mobile robot with a monocular camera and a laser structured light sensor, environment information acquired from two sensors is combined and fused by a Bayesian sensor fusion technique based on the probabilistic reliability function of each sensor predefined through experiments. For the self-localization using the monocular vision, the robot utilizes image features consisting of vertical edge lines from input camera images, and they are used as natural landmark points in self-localization process. However, in case of using the laser structured light sensor, it utilizes geometrical features composed of corners and planes as natural landmark shapes during this process, which are extracted from range data at a constant height from the navigation floor. Although only each feature group of them is sometimes useful to localize mobile robots, all features from the two sensors are simultaneously used and fused in term of information for reliable localization under various environment conditions. To verify the advantage of using multi-sensor fusion, a series of experiments are performed, and experimental results are discussed in detail.