• Title/Summary/Keyword: probabilistic VE/ LCC Analysis

Search Result 3, Processing Time 0.023 seconds

Application of probabilistic VE/LCC Analysis Models for Quay Wall Structures (안벽구조물의 확률론적 VE/LCC 분석모델 적용방안)

  • Ahn, Jong-Pil;Lee, Cheung-Bin;Park, Ju-Won;Yu, Deog-Chan
    • Korean Journal of Construction Engineering and Management
    • /
    • v.8 no.5
    • /
    • pp.71-79
    • /
    • 2007
  • It is common that the analysis of VE/LCC is performed in design phase of quay wall structures. The analysis is mainly executed based on experience and engineering sense of expert considering the selection of construction method, construction and maintenance cost. Recently there are increasing demands on the analysis that includes uncertainty and vulnerability of input parameters, for this purpose, fuzzy reliability based probabilistic VE/LCC analysis model for quay wall structures is suggested. In VE/LCC analysis for quay wall structures, the application of probabilistic analysis method give very similar results compare with those of deterministic analysis method. It is anticipated that the methodology proposed in this paper can also be utilized in the design and maintenance phase of other facilities where decision making is made for the probabilistic life cycle cost and value analysis.

Stochastic analysis for Real Rate Interest of Building Life Cycle Cost(LCC) with Monte-Carlo Simulation (몬테카를로 시뮬레이션을 이용한 건축물 생애주기비용(LCC)의 실질할인율에 대한 확률론적 분석)

  • Kim, Bum-Sic;Jung, Young-Han
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.161-163
    • /
    • 2012
  • Recently on Value Engineering(VE) and Life Cycle Cost(LCC) social interests is increasing. The government Turn Key, BTL projects and public works projects, such as VE and LCC Analysis on the value and economic analysis is mandatory. And accordingly the VE and LCC analysis is underway for the various studies. However, there is a problem existing in the LCC analysis. Worth the cost varies according to the flow of time. However, the real interest rate during the LCC analysis of buildings in calculation time for interest rates and inflation are not considering the value of the flow. In other words, a few years using the average value of the deterministic analysis method has been adopted. These costs for the definitive analysis of the cost of an uncertain future, unforeseen changes resulting hazardous value. In this study of the last 15 years interest rates and inflation targeting by using Monte-Carlo Simulation is to perform probabilistic analysis. This potential to overcome uncertainties of the cost of building a more scientific and LCC Estimation of the probability value of the real interest rate is presented.

  • PDF

A Study on the Design Value Analysis Model Using Probabilistic LCC Analysis of Water Supply System Project (확률적 LCC분석기법을 활용한 수도시설물의 설계VA모델에 관한 연구)

  • Jung Pyung-Ki;Seo Jong-Won;Lim Jong-Kwon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.2 s.18
    • /
    • pp.181-193
    • /
    • 2004
  • A life cycle cost analysis model for public water supply systems should be different from the ones for other civil and architectural facilities as the operation and the maintenance cost of the water supply systems mainly come from the various mechanical systems and the pipeline systems of the collecting/treating/distributing facilities. This paper presents a cost classification scheme and a probabilistic life cycle cost analysis (PLCCA) model for public water supply systems. A value analysis (VA) procedure that is well suited for practical purposes is also presented. The presented probabilistic life cycle model and the value analysis procedure were applied to a real world project, and this case study is discussed in the paper. The model and the procedure presented in this study can greatly contribute to the value-oriented design alternative selection, the estimation of the maintenance cost, and the allocation of budget for water supply system construction projects.