• Title/Summary/Keyword: principle design component

Search Result 81, Processing Time 0.026 seconds

A Study on the Zero-Voltage and Zero-Current-Switching Three Level DC/DC Converter using Secondary Auxiliary Circuit (2차측 보조 회로를 이용한 ZVZCS Three Level DC/DC 컨버터에 관한 연구)

  • Bae, Jin-Yong;Kim, Yong;Kwon, Soon-Do;Kim, Pill-Soo;Lee, Eun-Young
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.320-323
    • /
    • 2001
  • A ZVZCS(Zero-Voltage and Zero-Current-Switching) Three Level DC/DC Converter is presented to secondary auxiliary circuit. The converter presented in this paper used a phase shift control with a flying capacitor in the primary side to achieve ZVS for the outer switch. A secondary auxiliary circuit, which consists of one small capacitor and two small diode, is added in the secondary to provides ZVZCS conditions to primary switches, and aids to clamp secondary rectifier voltage. The auxiliary circuit Includes neither lossy component nor addition active switch, which makes the proposed converter efficient and effective. The principle of operation, feature, and design considerations are illustrated and verified through the experiment with a 500W 50kHz prototype converter.

  • PDF

Design of A Faulty Data Recovery System based on Sensor Network (센서 네트워크 기반 이상 데이터 복원 시스템 개발)

  • Kim, Sung-Ho;Lee, Young-Sam;Youk, Yui-Su
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.1
    • /
    • pp.28-36
    • /
    • 2007
  • Sensor networks are usually composed of tens or thousands of tiny devices with limited resources. Because of their limited resources, many researchers have studied on the energy management in the WSNs(Wireless Sensor Networks), especially taking into account communications efficiency. For effective data transmission and sensor fault detection in sensor network environment, a new remote monitoring system based on PCA(Principle Component Analysis) and AANN(Auto Associative Neural Network) is proposed. PCA and AANN have emerged as a useful tool for data compression and identification of abnormal data. Proposed system can be effectively applied to sensor network working in LEA2C(Low Energy Adaptive Connectionist Clustering) routing algorithms. To verify its applicability, some simulation studies on the data obtained from real WSNs are executed.

Underactuated Finger Mechanism for Body-Powered Partial Prosthesis (신체 힘에 의해 동작되는 부분 의수를 위한 부족구동 손가락 메커니즘)

  • Yoon, Dukchan;Lee, Geon;Choi, Youngjin
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.4
    • /
    • pp.193-204
    • /
    • 2016
  • This paper presents an anthropomorphic finger prosthesis for amputees whose proximal phalanx is mutilated. The finger prosthesis to be proposed is able to make the amputees to perform the natural motion such as flexion/extension as well as self-adaptive grasping motion as if normal human finger does. The mechanism of finger prosthesis with three degrees-of-freedom (DOFs) consists of two five-bar and one four-bar linkages. Two passive components composed of torsional spring and mechanical stopper and only one active joint are employed in order to realize an underactuation. Each passive component is installed into the five-bar linkage. In order to activate the finger prosthesis, it is required for the user to flex and extend the remaining proximal phalanx on the metacarpophalangeal (MCP) joint, not an electric motor. Thus the finger prosthesis conducts not only the natural motion according to his/her intention but also the grasping motion through the deformation of springs by the object for human finger-like behavior. In order to reveal the operation principle of the proposed mechanism, kinematic analysis is performed for the linkage design. Finally both simulations and experiments are conducted in order to reveal the design feasibility of the proposed finger mechanism.

A Software Engineering Process for Safety-critical Software Application (Safety-critical 소프트웨어 적용을 위한 소프트웨어 개발 절차)

  • Kang, Byung-Heon;Kim, Hang-Bae;Chang, Hoon-Seon;Jeon, Jong-Sun;Park, Suk-Joon
    • Nuclear Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.84-95
    • /
    • 1995
  • Application of computer software to safety-critical systems is on the increase. To be successful, the software must be designed and constructed to meet the functional and performance requirements of the system. For safety reason, the software must be demonstrated not only to meet these requirements, but also to operate safely as a component within the system. For longer-term cost consideration, the software must be designed and structured to ease future maintenance and modifications. This paper present a software engineering process for the production of safety-critical software for a nuclear power plant The presentation is expository in nature of a viable high quality safety-critical software development. It is based on the ideas of a rational design process and on the experience of the adaptation of such process in the production of the safety-critical software for the Shutdown System Number Two of Wolsong 2, 3 & 4 nuclear power generation plants. This process is significantly different from a conventional process in terms of rigorous software development phases and software design techniques. The process covers documentation, design, verification and testing using mathematically precise notations and highly reviewable tabular format to specify software requirements and software design. These specifications allow rigorous, stepwise verification of software design against software requirements, and code against software design using static analysis. The software engineering process described in this paper applies the principle of information-hiding decomposition in software design using a modular design technique so that when a change is' required or an error is detected, the affected scope can be readily and confidently located. It also facilitates a sense of high degree of confidence in the ‘correctness’ of the software production, and provides a relatively simple and straightforward code implementation effort.

  • PDF

Calculation method and application of natural frequency of integrated model considering track-beam-bearing-pier-pile cap-soil

  • Yulin Feng;Yaoyao Meng;Wenjie Guo;Lizhong Jiang;Wangbao Zhou
    • Steel and Composite Structures
    • /
    • v.49 no.1
    • /
    • pp.81-89
    • /
    • 2023
  • A simplified calculation method of natural vibration characteristics of high-speed railway multi-span bridge-longitudinal ballastless track system is proposed. The rail, track slab, base slab, main beam, bearing, pier, cap and pile foundation are taken into account, and the multi-span longitudinal ballastless track-beam-bearing-pier-cap-pile foundation integrated model (MBTIM) is established. The energy equation of each component of the MBTIM based on Timoshenko beam theory is constructed. Using the improved Fourier series, and the Rayleigh-Ritz method and Hamilton principle are combined to obtain the extremum of the total energy function. The simplified calculation formula of the natural vibration frequency of the MBTIM under the influence of vertical and longitudinal vibration is derived and verified by numerical methods. The influence law of the natural vibration frequency of the MBTIM is analyzed considering and not considering the participation of each component of the MBTIM, the damage of the track interlayer component and the stiffness change of each layer component. The results show that the error between the calculation results of the formula and the numerical method in this paper is less than 3%, which verifies the correctness of the method in this paper. The high-order frequency of the MBTIM is significantly affected considering the track, bridge pier, pile soil and pile cap, while considering the influence of pile cap on the low-order and high-order frequency of the MBTIM is large. The influence of component damage such as void beneath slab, mortar debonding and fastener failure on each order frequency of the MBTIM is basically the same, and the influence of component damage less than 10m on the first fourteen order frequency of the MBTIM is small. The bending stiffness of track slab and rail has no obvious influence on the natural frequency of the MBTIM, and the bending stiffness of main beam has influence on the natural frequency of the MBTIM. The bending stiffness of pier and base slab only has obvious influence on the high-order frequency of the MBTIM. The natural vibration characteristics of the MBTIM play an important guiding role in the safety analysis of high-speed train running, the damage detection of track-bridge structure and the seismic design of railway bridge.

A Study on Interaction Modes among Populations in Cooperative Coevolutionary Algorithm for Supply Chain Network Design (공급사슬 네트워크 설계를 위한 협력적 공진화 알고리즘에서 집단들간 상호작용방식에 관한 연구)

  • Han, Yongho
    • Korean Management Science Review
    • /
    • v.31 no.3
    • /
    • pp.113-130
    • /
    • 2014
  • Cooperative coevolutionary algorithm (CCEA) has proven to be a very powerful means of solving optimization problems through problem decomposition. CCEA implies the use of several populations, each population having the aim of finding a partial solution for a component of the considered problem. Populations evolve separately and they interact only when individuals are evaluated. Interactions are made to obtain complete solutions by combining partial solutions, or collaborators, from each of the populations. In this respect, we can think of various interaction modes. The goal of this research is to develop a CCEA for a supply chain network design (SCND) problem and identify which interaction mode gives the best performance for this problem. We present general design principle of CCEA for the SCND problem, which require several co-evolving populations. We classify these populations into two groups and classify the collaborator selection scheme into two types, the random-based one and the best fitness-based one. By combining both two groups of population and two types of collaborator selection schemes, we consider four possible interaction modes. We also consider two modes of updating populations, the sequential mode and the parallel mode. Therefore, by combining both four possible interaction modes and two modes of updating populations, we investigate seven possible solution algorithms. Experiments for each of these solution algorithms are conducted on a few test problems. The results show that the mode of the best fitness-based collaborator applied to both groups of populations combined with the sequential update mode outperforms the other modes for all the test problems.

Construction and Application of Network Design System for Optimal Water Quality Monitoring in Reservoir (저수지 최적수질측정망 구축시스템 개발 및 적용)

  • Lee, Yo-Sang;Kwon, Se-Hyug;Lee, Sang-Uk;Ban, Yang-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.4
    • /
    • pp.295-304
    • /
    • 2011
  • For effective water quality management, it is necessary to secure reliable water quality information. There are many variables that need to be included in a comprehensive practical monitoring network : representative sampling locations, suitable sampling frequencies, water quality variable selection, and budgetary and logistical constraints are examples, especially sampling location is considered to be the most important issues. Until now, monitoring network design for water quality management was set according to the qualitative judgments, which is a problem of representativeness. In this paper, we propose network design system for optimal water quality monitoring using the scientific statistical techniques. Network design system is made based on the SAS program of version 9.2 and configured with simple input system and user friendly outputs considering the convenience of users. It applies to Excel data format for ease to use and all data of sampling location is distinguished to sheet base. In this system, time plots, dendrogram, and scatter plots are shown as follows: Time plots of water quality variables are graphed for identifying variables to classify sampling locations significantly. Similarities of sampling locations are calculated using euclidean distances of principal component variables and dimension coordinate of multidimensional scaling method are calculated and dendrogram by clustering analysis is represented and used for users to choose an appropriate number of clusters. Scatter plots of principle component variables are shown for clustering information with sampling locations and representative location.

Development of Up-Down Turnout System of AGT for Reduction of Construction costs (건설비 절감을 위한 고무차륜 경량전철 상하식분기기 개발)

  • Cha, Kwon-Jung;Yoon, Il-Ro;Kim, Dong-Howal;Fukumoto, Yozo
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.745-752
    • /
    • 2011
  • Light Rail Vehicle(LRT) is "New Transit System" that has transportation capacity as well as physical size of vehicle is in-between bus and subway. The demand of LRT system is increasing rapidly; both domestically and internationally. Reason being is that it is more economical and eco-friendly compare to existing heavy rail vehicle. Especially, Busan Subway Line 4 K-AGT (Rubber-tired LRT) being the first of its kind to start revenue service in Korea, it is very much likely that application of its demand will continue to increase. Considering its trend, study to reduce implementation cost of LRT is being pursued in many different aspects; reducing construction cost is one that aspect. In this study, on-site application of 'Up-Down Turnout System' implementation research has been carried out which can replace existing 'Left-Right Turnout System'. When safety of its type gets verified, application of this system to line which intends to use K-AGT, Shin-Lim Line and Dong-Book Line, expects to save its construction cost. This thesis paper reports ongoing research of AGT 'Up-Down Turnout System' development and main component design factors, fundamental principle, performance test result.

  • PDF

Vibration analysis of characteristics and valveless Type Piezoelectric micro-pump (VALVELSS 압전펌프 진동 해석 및 특성)

  • Lim, Jong-Nam;Oh, Jin-Heon;Lim, Kee-Joe;Kim, Hyun-Hoo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.185-185
    • /
    • 2009
  • Micropump is very useful component in micro/nano fluidics and bioMEMS applications. Using the flexural vibration mode of PZT bar, a piezopump is successfully made. The PZT bar is polarized with thickness direction. The proposed structure for the piezo-pump consists of an input and an output port, piezoelectric ceramic actuator, actuator support, diaphragm. The traveling flexural wave along the bar is obtained by dividing two standing waves which are temporally and spatially phase shifted by 90 degrees from each other. Fluid is drawn into a forming chamber, eventually the forming chamber closes trapping the fluid therein. The finite elements analysis on the proposed pump model is carried out to verify its operation principle and design by the commercial FEM software. Components of piezopump were made, assembled, and tested to validate the concepts of the proposed pump and confirm the simulation results. The performance of the proposed piezopump the highest pressure level of 83.4kHz.

  • PDF

Experimental studies on steel frame structures of traditional-style buildings

  • Xue, Jianyang;Qi, Liangjie
    • Steel and Composite Structures
    • /
    • v.22 no.2
    • /
    • pp.235-255
    • /
    • 2016
  • This paper experimentally investigated the behavior of steel frame structures of traditional-style buildings subjected to combined constant axial load and reversed lateral cyclic loading conditions. The low cyclic reversed loading test was carried out on a 1/2 model of a traditional-style steel frame. The failure process and failure mode of the structure were observed. The mechanical behaviors of the steel frame, including hysteretic behaviors, order of plastic hinges, load-displacement curve, characteristic loads and corresponding displacements, ductility, energy dissipation capacity, and stiffness degradation were analyzed. Test results showed that the Dou-Gong component (a special construct in traditional-style buildings) in steel frame structures acted as the first seismic line under the action of horizontal loads, the plastic hinges at the beam end developed sufficiently and satisfied the Chinese Seismic Design Principle of "strong columns-weak beams, strong joints-weak members". The pinching phenomenon of hysteretic loops occurred and it changed into Z-shape, indicating shear-slip property. The stiffness degradation of the structure was significant at the early stage of the loading. When failure, the ultimate elastic-plastic interlayer displacement angle was 1/20, which indicated high collapse resistance capacity of the steel frame. Furthermore, the finite element analysis was conducted to simulate the behavior of traditional-style frame structure. Test results agreed well with the results of the finite element analysis.