• 제목/요약/키워드: principal of Bernoulli

검색결과 6건 처리시간 0.02초

Thermal stability analysis of temperature dependent inhomogeneous size-dependent nano-scale beams

  • Bensaid, Ismail;Bekhadda, Ahmed
    • Advances in materials Research
    • /
    • 제7권1호
    • /
    • pp.1-16
    • /
    • 2018
  • Thermal bifurcation buckling behavior of fully clamped Euler-Bernoulli nanobeam built of a through thickness functionally graded material is explored for the first time in the present paper. The variation of material properties of the FG nanobeam are graded along the thickness by a power-law form. Temperature dependency of the material constituents is also taken into consideration. Eringen's nonlocal elasticity model is employed to define the small-scale effects and long-range connections between the particles. The stability equations of the thermally induced FG nanobeam are derived via the principal of the minimum total potential energy and solved analytically for clamped boundary conditions, which lead for more accurate results. Moreover, the obtained buckling loads of FG nanobeam are validated with those existing works. Parametric studies are performed to examine the influences of various parameters such as power-law exponent, small scale effects and beam thickness on the critical thermal buckling load of the temperature-dependent FG nanobeams.

Agglomeration effects on the buckling behaviour of embedded concrete columns reinforced with SiO2 nano-particles

  • Zamanian, Mohammad;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Wind and Structures
    • /
    • 제24권1호
    • /
    • pp.43-57
    • /
    • 2017
  • The use of nanotechnology materials and applications in the construction industry should be considered for enhancing material properties. However, the nonlinear buckling of an embedded straight concrete columns reinforced with silicon dioxide ($SiO_2$) nanoparticles is investigated in the present study. The column is simulated mathematically with Euler-Bernoulli and Timoshenko beam models. Agglomeration effects and the characteristics of the equivalent composite are determined using Mori-Tanaka approach. The foundation around the column is simulated with spring and shear layer. The governing equations are derived using energy method and Hamilton's principal. Differential quadrature method (DQM) is used in order to obtain the buckling load of structure. The influences of volume percent of $SiO_2$ nanoparticles, geometrical parameters and agglomeration on the buckling of column are investigated. Numerical results indicate that considering agglomeration effects leads to decrease in buckling load of structure.

Buckling of concrete columns retrofitted with Nano-Fiber Reinforced Polymer (NFRP)

  • Bilouei, Babak Safari;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Computers and Concrete
    • /
    • 제18권5호
    • /
    • pp.1053-1063
    • /
    • 2016
  • As concrete is most usable material in construction industry it's been required to improve its quality. Nowadays, nanotechnology offers the possibility of great advances in construction. For the first time, the nonlinear buckling of straight concrete columns armed with single-walled carbon nanotubes (SWCNTs) resting on foundation is investigated in the present study. The column is modelled with Euler-Bernoulli beam theory. The characteristics of the equivalent composite being determined using the Mori-Tanaka model. The foundation around the column is simulated with spring and shear layer. Employing nonlinear strains-displacements, energy methods and Hamilton's principal, the governing equations are derived. Differential quadrature method (DQM) is used in order to obtain the buckling load of structure. The influences of volume percent of SWCNTs, geometrical parameters, elastic foundation and boundary conditions on the buckling of column are investigated. Numerical results indicate that reinforcing the concrete column with SWCNTs, the structure becomes stiffer and the buckling load increases with respect to concrete column armed with steel.

Buckling analysis of embedded concrete columns armed with carbon nanotubes

  • Arani, Ali Jafarian;Kolahchi, Reza
    • Computers and Concrete
    • /
    • 제17권5호
    • /
    • pp.567-578
    • /
    • 2016
  • As concrete is most usable material in construction industry it's been required to improve its quality. Nowadays, nanotechnology offers the possibility of great advances in construction. For the first time, the nonlinear buckling of straight concrete columns armed with single-walled carbon nanotubes (SWCNTs) resting on foundation is investigated in the present study. The column is modelled with Euler-Bernoulli and Timoshenko beam theories. The characteristics of the equivalent composite being determined using mixture rule. The foundation around the column is simulated with spring and shear layer. Employing nonlinear strains-displacements, energy methods and Hamilton's principal, the governing equations are derived. Differential quadrature method (DQM) is used in order to obtain the buckling load of structure. The influences of volume percent of SWCNTs, geometrical parameters, elastic foundation and boundary conditions on the buckling of column are investigated. Numerical results indicate that reinforcing the concrete column with SWCNTs, the structure becomes stiffer and the buckling load increases with respect to concrete column armed with steel.

AIR-MULTIPLIER 단면 형상에 따른 유동양상에 대한 수치적 해석 (Numerical analysis of air flow in the various shapes of air multiplier cross section)

  • 최정식;김형묵;김유민;구본찬
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제3회(2014년)
    • /
    • pp.610-613
    • /
    • 2014
  • 본 연구에서는 Dyson사의 Air multiplier의 Coanda surface각도에 따른 Air foil 주변의 2차원 유동을 분석하고 Surface각도가 유동에 미치는 영향에 대해 해석하였다. Air multiplier 단면의 작은 Slit을 통해 분류된 공기는 Venturi effect에 의해 가속되며 Coanda effect에 의해 단면을 따라 흐르며 압력차를 발생시켜 주변의 공기를 추가적으로 유입시킨다. EDISON CFD를 이용하여 Surface 각도에 따른 Air foil 주변의 유동을 구현하고 각도가 유동에 미치는 영향을 해석하였다. 또한 다른 논문에서 발췌한 실험값과 CFD 분석을 통해 얻은 값을 비교하여 CFD분석이 유효한지 확인하였다.

  • PDF

Finite element modeling and bending analysis of piezoelectric sandwich beam with debonded actuators

  • Rao, K. Venkata;Raja, S.;Munikenche, T.
    • Smart Structures and Systems
    • /
    • 제13권1호
    • /
    • pp.55-80
    • /
    • 2014
  • The present work pays emphasis on investigating the effect of different types of debonding on the bending behaviour of active sandwich beam, consisting of both extension and shear actuators. An active sandwich beam finite element is formulated by using Timoshenko's beam theory, characterized by first order shear deformation for the core and Euler-Bernoulli's beam theory for the top and bottom faces. The problem of debondings of extension actuator and face are dealt with by employing four-region model for inner debonding and three-region model for the edge debonding respectively. Displacement based continuity conditions are enforced at the interfaces of different regions using penalty method. Firstly, piezoelectric actuation of healthy sandwich beam is assessed through deflection analysis. Then the effect of actuators' debondings with different boundary conditions on bending behavior is computationally evaluated and experimentally clamped-free case is validated. The results generated will be useful to address the damage tolerant design procedures for smart sandwich beam structures with structural control and health monitoring applications.