• Title/Summary/Keyword: principal component regression model

Search Result 106, Processing Time 0.027 seconds

A Generation and Accuracy Evaluation of Common Metadata Prediction Model Using Public Bicycle Data and Imputation Method

  • Kim, Jong-Chan;Jung, Se-Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.2
    • /
    • pp.287-296
    • /
    • 2022
  • Today, air pollution is becoming a severe issue worldwide and various policies are being implemented to solve environmental pollution. In major cities, public bicycles are installed and operated to reduce pollution and solve transportation problems, and operational information is collected in real time. However, research using public bicycle operation information data has not been processed. This study uses the daily weather data of Korea Meteorological Agency and real-time air pollution data of Korea Environment Corporation to predict the amount of daily rental bicycles. Cross- validation, principal component analysis and multiple regression analysis were used to determine the independent variables of the predictive model. Then, the study selected the elements that satisfy the significance level, constructed a model, predicted the amount of daily rental bicycles, and measured the accuracy.

Comparison of Principal Component Regression and Nonparametric Multivariate Trend Test for Multivariate Linkage (다변량 형질의 유전연관성에 대한 주성분을 이용한 회귀방법와 다변량 비모수 추세검정법의 비교)

  • Kim, Su-Young;Song, Hae-Hiang
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.1
    • /
    • pp.19-33
    • /
    • 2008
  • Linear regression method, proposed by Haseman and Elston(1972), for detecting linkage to a quantitative trait of sib pairs is a linkage testing method for a single locus and a single trait. However, multivariate methods for detecting linkage are needed, when information from each of several traits that are affected by the same major gene are available on each individual. Amos et al. (1990) extended the regression method of Haseman and Elston(1972) to incorporate observations of two or more traits by estimating the principal component linear function that results in the strongest correlation between the squared pair differences in the trait measurements and identity by descent at a marker locus. But, it is impossible to control the probability of type I errors with this method at present, since the exact distribution of the statistic that they use is yet unknown. In this paper, we propose a multivariate nonparametric trend test for detecting linkage to multiple traits. We compared with a simulation study the efficiencies of multivariate nonparametric trend test with those of the method developed by Amos et al. (1990) for quantitative traits data. For multivariate nonparametric trend test, the results of the simulation study reveal that the Type I error rates are close to the predetermined significance levels, and have in general high powers.

Analysis on Correlation between AE Parameters and Stress Intensity Factor using Principal Component Regression and Artificial Neural Network (주성분 회귀분석 및 인공신경망을 이용한 AE변수와 응력확대계수와의 상관관계 해석)

  • Kim, Ki-Bok;Yoon, Dong-Jin;Jeong, Jung-Chae;Park, Phi-Iip;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.1
    • /
    • pp.80-90
    • /
    • 2001
  • The aim of this study is to develop the methodology which enables to identify the mechanical properties of element such as stress intensity factor by using the AE parameters. Considering the multivariate and nonlinear properties of AE parameters such as ringdown count, rise time, energy, event duration and peak amplitude from fatigue cracks of machine element the principal component regression(PCR) and artificial neural network(ANN) models for the estimation of stress intensity factor were developed and validated. The AE parameters were found to be very significant to estimate the stress intensity factor. Since the statistical values including correlation coefficients, standard mr of calibration, standard error of prediction and bias were stable, the PCR and ANN models for stress intensity factor were very robust. The performance of ANN model for unknown data of stress intensity factor was better than that of PCR model.

  • PDF

Assessment through Statistical Methods of Water Quality Parameters(WQPs) in the Han River in Korea

  • Kim, Jae Hyoun
    • Journal of Environmental Health Sciences
    • /
    • v.41 no.2
    • /
    • pp.90-101
    • /
    • 2015
  • Objective: This study was conducted to develop a chemical oxygen demand (COD) regression model using water quality monitoring data (January, 2014) obtained from the Han River auto-monitoring stations. Methods: Surface water quality data at 198 sampling stations along the six major areas were assembled and analyzed to determine the spatial distribution and clustering of monitoring stations based on 18 WQPs and regression modeling using selected parameters. Statistical techniques, including combined genetic algorithm-multiple linear regression (GA-MLR), cluster analysis (CA) and principal component analysis (PCA) were used to build a COD model using water quality data. Results: A best GA-MLR model facilitated computing the WQPs for a 5-descriptor COD model with satisfactory statistical results ($r^2=92.64$,$Q{^2}_{LOO}=91.45$,$Q{^2}_{Ext}=88.17$). This approach includes variable selection of the WQPs in order to find the most important factors affecting water quality. Additionally, ordination techniques like PCA and CA were used to classify monitoring stations. The biplot based on the first two principal components (PCs) of the PCA model identified three distinct groups of stations, but also differs with respect to the correlation with WQPs, which enables better interpretation of the water quality characteristics at particular stations as of January 2014. Conclusion: This data analysis procedure appears to provide an efficient means of modelling water quality by interpreting and defining its most essential variables, such as TOC and BOD. The water parameters selected in a COD model as most important in contributing to environmental health and water pollution can be utilized for the application of water quality management strategies. At present, the river is under threat of anthropogenic disturbances during festival periods, especially at upstream areas.

Simultaneous Determination of Anionic and Nonionic Surfactants Using Multivariate Calibration Method (다변량 분석법에 의한 Anionic Surfactant와 Nonionic Surfactant의 동시정량)

  • Sang Hak Lee;Soon Nam Kwon;Bum Mok Son
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.1
    • /
    • pp.19-25
    • /
    • 2003
  • A spectrophotometric method for the simultaneous determination of anionic and nonionic surfactant based on the application of multivariate calibration method such as principal component regression(PCR) and partial least squares(PLS) has been studied. The calibration models in PCR and PLS were obtained from the spectral data in the range of 400~700 nm for each standard of a calibration set of 26 standards, each containing different amounts of two surfactants. The relative standard error of prediction(RSEP$_{\alpha}$) was obtained to assess the model goodness in quantifying each analyte in a 5 validation samples which containing different amounts of two surfactants.

Simultaneous Determination of Tryptophan and Tyrosine by Spectrofluorimetry Using Multivariate Calibration Method (다변량 분석법을 이용한 Tryptophan과 Tyrosine의 형광분광법적 정량)

  • Lee, Sang-Hak;Park, Ju-Eun;Son, Beom-Mok
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.4
    • /
    • pp.309-317
    • /
    • 2002
  • A spectrofluorimetric method for the simultaneous determination of amino acids (tryptophan and tyrosine) based on the application of multivariate calibration method such as principal component regression and partial least squares (PLS) to luminescence measurements has been studied. Emission spectra of synthetic mixtures of two amino acids were obtained at excitation wavelength of 257 ㎚. The calibration model in PCR and PLS was obtained from the spectral data in the range of 280-500 ㎚ for each standard of a calibration set of 32 standards, each containing different amounts of two amino acids. The relative standard error of prediction ($RSEP_a$) was obtained to assess the model goodness in quantifying each analyte in a validation set. The overall relative standard error of prediction ($RSEP_m$) for the mixture obtained from the results of a validation set, formed by 6 independent mixtures was also used to validate the present method.

SOH Estimation and Feature Extraction using Principal Component Analysis based on Health Indicator for High Energy Battery Pack (건전성 지표 기반 주성분분석(PCA)을 적용한 고용량 배터리 팩의 열화 인자 추출 방법 및 SOH 진단 기법 연구)

  • Lee, Pyeong-Yeon;Kwon, Sanguk;Kang, Deokhun;Han, Seungyun;Kim, Jonghoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.5
    • /
    • pp.376-384
    • /
    • 2020
  • An energy storage system is composed of lithium-ion batteries in modern applications. Batteries are regarded as storage devices for renewable and residual energy. The failure of batteries can cause the performance reduction and explosion of battery systems. High maintenance cost is essential when dealing with the problem of battery safety. Therefore an accurate health diagnosis is required to ensure the high reliability of battery systems. A battery pack is a combination of single cells in series and parallel connections. A battery pack has to consider various factors to assess battery health. Battery health involves conventional factors and additional factors, such as cell-to-cell imbalance. For large applications, state-of-health (SOH) can be inaccurate because of the lack of factors that indicate the state of the battery pack. In this study, six characterization factors are proposed for improving the SOH estimation of battery packs. The six proposed characterization factors can be regarded as health indicators (HIs). The six HIs are applied to the principal component analysis (PCA) algorithm. To reflect information regarding capacity, voltage, and temperature, the PCA algorithm extracts new degradation factors by using the six HIs. The new degradation factors are applied to a multiple regression model. Results show the advancement and improvement of SOH estimation.

Asymptotic Test for Dimensionality in Sliced Inverse Regression (분할 역회귀모형에서 차원결정을 위한 점근검정법)

  • Park, Chang-Sun;Kwak, Jae-Guen
    • The Korean Journal of Applied Statistics
    • /
    • v.18 no.2
    • /
    • pp.381-393
    • /
    • 2005
  • As a promising technique for dimension reduction in regression analysis, Sliced Inverse Regression (SIR) and an associated chi-square test for dimensionality were introduced by Li (1991). However, Li's test needs assumption of Normality for predictors and found to be heavily dependent on the number of slices. We will provide a unified asymptotic test for determining the dimensionality of the SIR model which is based on the probabilistic principal component analysis and free of normality assumption on predictors. Illustrative results with simulated and real examples will also be provided.

A gradient boosting regression based approach for energy consumption prediction in buildings

  • Bataineh, Ali S. Al
    • Advances in Energy Research
    • /
    • v.6 no.2
    • /
    • pp.91-101
    • /
    • 2019
  • This paper proposes an efficient data-driven approach to build models for predicting energy consumption in buildings. Data used in this research is collected by installing humidity and temperature sensors at different locations in a building. In addition to this, weather data from nearby weather station is also included in the dataset to study the impact of weather conditions on energy consumption. One of the main emphasize of this research is to make feature selection independent of domain knowledge. Therefore, to extract useful features from data, two different approaches are tested: one is feature selection through principal component analysis and second is relative importance-based feature selection in original domain. The regression model used in this research is gradient boosting regression and its optimal parameters are chosen through a two staged coarse-fine search approach. In order to evaluate the performance of model, different performance evaluation metrics like r2-score and root mean squared error are used. Results have shown that best performance is achieved, when relative importance-based feature selection is used with gradient boosting regressor. Results of proposed technique has also outperformed the results of support vector machines and neural network-based approaches tested on the same dataset.

Development and Evaluation of Regression Model for TOC Contentation Estimation in Gam Stream Watershed (감천 유역의 TOC 농도 추정을 위한 회귀 모형 개발 및 평가)

  • Jung, Kang-Young;Ahn, Jung-Min;Lee, Kyung-Lak;Kim, Shin;Yu, Jae-Jeong;Cheon, Se-Uk;Lee, In Jung
    • Journal of Environmental Science International
    • /
    • v.24 no.6
    • /
    • pp.743-753
    • /
    • 2015
  • In this study, it is an object to develop a regression model for the estimation of TOC (total organic carbon) concentration using investigated data for three years from 2010 to 2012 in the Gam Stream unit watershed, and applied in 2009 to verify the applicability of the regression model. TOC and $COD_{Mn}$ (chemical oxygen demand) were appeared to be derived the highest correlation. TOC was significantly correlated with 5 variables including BOD (biological oxygen demand), discharge, SS (suspended solids), Chl-a (chlorophyll a) and TP (total phosphorus) of p<0.01. As a result of PCA (principal component analysis) and FA (factor analysis), COD, TOC, SS, discharge, BOD and TP have been classified as a first factor. TOCe concentration was estimated using the model developed as an independent variable $BOD_5$ and $COD_{Mn}$. R squared value between TOC and measurement TOC is 0.745 and 0.822, respectively. The independent variable were added step by step while removing lower importance variable. Based on the developed optimal model, R squared value between measurement value and estimation value for TOC was 0.852. It was found that multiple independent variables might be a better the estimation of TOC concentration using the regression model equation(in a given sites).