• Title/Summary/Keyword: primordial follicle

Search Result 38, Processing Time 0.026 seconds

Distribution of Cat Follicles among Varying Ages and Preantral Follicles Maturation (고양이 연령에 따른 발육단계별 난포의 분포와 전동난포의 배양)

  • Yu I.;Leibo S.P.;Dresser B.C;Kim Y.J.;Kim I.S.;Park Y.J.
    • Journal of Embryo Transfer
    • /
    • v.21 no.1
    • /
    • pp.21-27
    • /
    • 2006
  • This study was conducted to determine the distribution of cat follicles among varying ages and produce oocytes from preantral follicles cultured in vitro. We used ovaries from 41 cats ranging in age from 0.3 to 5 years. Ovaries were obtained from cats undergoing routine ovariectomy at local veterinary clinics. As a prelude to in vitro culture of preantral follicles, the length and the width and the weight of ovaries among cats of varying ages were measured. Ovaries were fixed in 10% formalin, embedded in paraffin, cut into $3{\mu}m$-sections, mounted on slides and stained with hematoxylin and eosin. Follicles were evaluated at 200X and 400X magnification. Distribution of follicles among cats of varying ages were evaluated according to follicle classification: primordial, primary, transitional, preantral and antral follicles. Preantral follicles were isolated by the simple mechanical procedure. Each follicle was cultured in a well containing $100{\mu}l$ of medium 199 supplemented with 10% fetal bovine serum (FBS) or polyvinylalcohol (PVA) for 16 days. Follicle diameters were measured under inverted microscope every 4 days. The length, the width and the weight of ovaries were increased gradually according to ages but there was not significant difference among cats of varying ages. Majority of follicles were primordial follicles (84%) regardless of cat ages (p<0.05). Follicle diameter increased until 4 days of culture. However, period longer than 4 days of culture in vitro had a deleterious effect on follicle survival regardless of supplement (FBS or PVA). A few oocytes were collected from preantral follicles cultured in vitro. These basic reproductive techniques in domestic cats can be a useful tool to save endangered feline species.

Expression of Membrane Fusion Related Genes in Mouse Ovary (마우스 난소에서 막융합 관련 유전자의 발현)

  • Jung, Bok-Hae;Sung, Hyun-Ho;Park, Chang-Eun
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.48 no.1
    • /
    • pp.8-14
    • /
    • 2016
  • Granulosa cells surround the oocyte within the ovarian follicle and play an essential role in creating conditions required for oocyte as well as follicular development. The current study was conducted to examine the gene expression profile of mouse ovaries during the primordial to primary follicle transition process. Total RNAs from mouse ovaries on day 5 and day 12 were synthesized cDNA using annealing control primers. The DEGs were cloned and their identities were analyzed by BLAST search. The Plekha5 and Anxa11 were highly expressed in primary follicle stage. By contrast, their expression was increased in granulosa cells at the primary follicle stage. We have successfully discovered a list of genes expressed in day 5 and day 12 ovaries and confirmed that some of them are differentially expressed in PMF and/or PRI. This is a spatial-temporal regulatory mechanism on the ovarian folliculogenesis through membrane fusion. The gene expression profile from the current study would provide insight for future study on the mechanism(s) involved in primordial-primary follicular transition. This will provide information for identification of the mechanism of ovarian dysfunction.

Inhibitor of DNA Binding Protein (Id)1 and Id2 mRNA Expression on Folliculogenesis in Rat Ovary (랫드 난소에서 난포 발달에 따른 DNA 결합 단백질 억제인자 (Inhibitor of DNA Binding Protein) Id1 and Id2 mRNA 발현)

  • Hwang, Seong-Soo;Lee, Pyung-Hee;Ko, Yeoung-Gyu;Yang, Byoung-Chul;Seong, Hwan-Hoo;Min, Kwan-Sik;Yoon, Jong-Taek
    • Journal of Embryo Transfer
    • /
    • v.23 no.3
    • /
    • pp.183-187
    • /
    • 2008
  • This study was conducted to analyze the expression pattern of inhibitor of DNA binding proteins (Id)1 and Id2 mRNA on folliculogenesis in rat ovary. The ovaries were obtained from 27 days old Sprague-Dawley rat, fixed, dehydrated, and paraffin embedded. For in situ hybridization, anti-sense and sense Idl and Id2 cRNA probes were prepared and applied to the ovarian section. The ovarian sections were coated with NTB-2 emulsion. After that, the slides were developed and counterstained with hematoxylin and eosin staining. In oocytes, the hybridizational signals of Id1 mRNA were strong in primordial and primary follicles, however, there were no signals in that of atretic or preovulatory follicles. The Id2 mRNA signals were also strong in the oocytes of primordial, primary and secondary follicles. Interestingly, the Id2 mRNA was expressed specifically granulosa cells, but nor in oocyte or theca cells in dominant and preovulatory follicles. Based on these results, Id1 and Id2 mRNA was expressed specifically at follicle stages and follicular tissue and might be closely related with follicle development.

Rehmannioside D mitigates disease progression in rats with experimental-induced diminished ovarian reserve via Forkhead Box O1/KLOTHO axis

  • Yan Liang;Huimin Wang;Jin Chen;Lingyan Chen;Xiaoyong Chen
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.2
    • /
    • pp.167-176
    • /
    • 2023
  • This study aims to explore the impact of Rehmannioside D (RD) on ovarian functions of rats with diminished ovarian reserve (DOR) and its underlying mechanisms of action. A single injection of cyclophosphamide was performed to establish a DOR rat model, and fourteen days after the injection, the rats were intragastrically administrated with RD for two weeks. Rat estrus cycles were tested using vaginal smears. Ovarian tissues were histologically evaluated, the number of primordial, mature, and atretic follicles was calculated, and the apoptotic rate of granulosa cells. Follicle-stimulating hormone (FSH), luteinizing hormone (LH), and estradiol (E2) levels were determined by ELISA assays. Protein levels of Forkhead Box O1 (FOXO1), KLOTHO, Bcl-2, and Bax were investigated in ovarian tissues of DOR rats. The binding between FOXO1 and KLOTHO was verified by ChIP assay. High-dose administration of RD into DOR rats improved their estrus cycles, increased ovarian index, enhanced the number of primordial and mature follicles, reduced the number of atretic follicle number, and ovarian granulosa cell apoptosis in addition to inhibiting FSH and LH levels and upregulating E2 expression. FOXO1 and KLOTHO were significantly suppressed in DOR rats. FOXO1 knockdown partially suppressed the protective effects of RD on DOR rats, and KLOTHO overexpression could restore RD-induced blockade of DOR development despite knocking down FOXO1. FOXO1 antibody enriched KLOTHO promoter, and the binding between them was reduced in DOR group compared to that in sham group. RD improved ovarian functions in DOR rats and diminished granulosa cell apoptosis via the FOXO1/KLOTHO axis.

mRNA Expression of the Regulatory Factors for the Early Folliculogenesis in vitro (체외배양 중인 생쥐 난소에서 초기난포 조절인자의 발현)

  • Yoon, Se-Jin;Kim, Ki-Ryeong;Chung, Hyung-Min;Yoon, Tae-Ki;Cha, Kwang-Yul;Lee, Kyung-Ah
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.32 no.3
    • /
    • pp.207-216
    • /
    • 2005
  • Objective: To understand the crucial requirement for the normal early folliculogenesis, we evaluated molecular as well as physiological differences during in vitro ovarian culture. Among the important regulators for follicle development, anti-Müllerian hormone (AMH) and FSH Receptor (FSHR) have been known to be expressed in the cuboidal granulosa cells. Meanwhile, it is known that c-kit is germ cell-specific and GDF-9 is also oocyte-specific regulator. To evaluate the functional requirement for the competence of normal follicular development, we investigated the differential mRNA expression of several factors secreted from granulosa cells and oocytes between in vivo and in vitro developed ovaries. Materials and Methods: Ovaries from ICR neonates (the day of birth) were cultured for 4 days (for primordial to primary transition) or 8 days (for secondary follicle formation) in ${\alpha}$-MEM glutamax supplemented with 3 mg/ml BSA without serum or growth factors. The mRNA levels of the several factors were investigated by quantitative real-time PCR analysis. Freshly isolated 0-, 4-, and 8-day-old ovaries were used as control. Results: The mRNA of AMH and FSHR as granulosa cell factors was highly increased according to the ovarian development in both of 4- and 8-day-old control. However, the mRNA expression was not induced in both of 4- and 8-day in vitro cultured ovaries. The mRNA expression of GDF-9 known to regulate follicle growth as an oocyte factor was different between in vivo and in vitro developed ovaries. In addition, the transcript of GDF-9 was expressed in the primordial follicles of mouse ovaries. The mRNA expression of c-kit was not significantly different during the early folliculogenesis in vitro. Conclusion: This is the first report regarding endogenous AMH and FSHR expression during the early folliculogenesis in vitro. In conclusion, it will be very valuable to evaluate cuboidal granulosa cell factors as functional marker(s) for normal early folliculogenesis in vitro.

Role of Growth Differentiation Factor 9 and Bone Morphogenetic Protein 15 in Ovarian Function and Their Importance in Mammalian Female Fertility - A Review

  • Castro, Fernanda Cavallari de;Cruz, Maria Helena Coelho;Leal, Claudia Lima Verde
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.8
    • /
    • pp.1065-1074
    • /
    • 2016
  • Growth factors play an important role during early ovarian development and folliculogenesis, since they regulate the migration of germ cells to the gonadal ridge. They also act on follicle recruitment, proliferation/atresia of granulosa cells and theca, steroidogenesis, oocyte maturation, ovulation and luteinization. Among the growth factors, the growth differentiation factor 9 (GDF9) and the bone morphogenetic protein 15 (BMP15), belong to the transforming growth factor beta (TGF-${\beta}$) superfamily, have been implicated as essential for follicular development. The GDF9 and BMP15 participate in the evolution of the primordial follicle to primary follicle and play an important role in the later stages of follicular development and maturation, increasing the steroidogenic acute regulatory protein expression, plasminogen activator and luteinizing hormone receptor (LHR). These factors are also involved in the interconnections between the oocyte and surrounding cumulus cells, where they regulate absorption of amino acids, glycolysis and biosynthesis of cholesterol cumulus cells. Even though the mode of action has not been fully established, in vitro observations indicate that the factors GDF9 and BMP15 stimulate the growth of ovarian follicles and proliferation of cumulus cells through the induction of mitosis in cells and granulosa and theca expression of genes linked to follicular maturation. Thus, seeking greater understanding of the action of these growth factors on the development of oocytes, the role of GDF9 and BMP15 in ovarian function is summarized in this brief review.

Morphological Criteria of Bovine Ovaries for Predicting Retrieval Efficiency of Preantral Follicles

  • Choi, Moon Hwan;Oh, Ji Hwan;Kim, Tae Min;Han, Jae Yong;Lim, Jeong Mook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.12
    • /
    • pp.1711-1715
    • /
    • 2006
  • To predict the number of preantral (primordial, primary and secondary) follicles retrieved from bovine ovaries, we examined the relationship between morphological parameters of ovaries and number of preantral follicles retrieved mechanically. The preantral follicles were retrieved mechanically by slicing ovarian tissue and the influences of size of the ovaries, number of antral follicles, and presence of cystic follicle and corpus luteum on the retrieval were evaluated. Total 77 ovaries were used and significant (p<0.05) relationship was detected between the number of antral follicles and the presence of cystic follicles, and the retrieval number. More preantral follicles were retrieved from the ovaries having more than 20 antral follicles than those having less than 20 antral follicles (17,760${\pm}$5,637 vs. 3,689${\pm}$537) in the ovarian cortex. The retrieval number was significantly reduced in cystic ovaries compared with non-cystic ovaries (5,167${\pm}$825 vs. 20,631${\pm}$6,507). However, neither ovary size (<3.5, 3.5 to 4.0, 4.0 to 4.5 and >4.5 cm) nor the presence of corpus luteum affected the follicle retrieval. In conclusion, the number of preantral follicles retrieved from the ovaries can simply be predicted by the number of antral follicles and the presence of cystic follicles in the ovarian cortex.

Effects of supplementation with antifreeze proteins on the follicular integrity of vitrified-warmed mouse ovaries: Comparison of two types of antifreeze proteins alone and in combination

  • Kim, Min Kyung;Kong, Hyun Sun;Youm, Hye Won;Jee, Byung Chul
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.44 no.1
    • /
    • pp.8-14
    • /
    • 2017
  • Objective: The aim of this study was to analyze the effect of supplementing vitrification and warming solutions with two types of antifreeze proteins (AFPs) and the combination thereof on the follicular integrity of vitrified-warmed mouse ovaries. Methods: Ovaries (n=154) were obtained from 5-week-old BDF1 female mice (n=77) and vitrified using ethylene glycol and dimethyl sulfoxide with the supplementation of 10 mg/mL of Flavobacterium frigoris ice-binding protein (FfIBP), 10 mg/mL of type III AFP, or the combination thereof. Ovarian sections were examined by light microscopy after hematoxylin and eosin staining, and follicular intactness was assessed as a whole and according to the type of follicle. Apoptosis within the follicles as a whole was detected by a terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling assay. Results: The proportion of overall intact follicles was significantly higher in the type III AFP-supplemented group (60.5%) and the combination group (62.9%) than in the non-supplemented controls (43.8%, p<0.05 for each). The proportion of intact primordial follicles was significantly higher in the FfIBP-supplemented (90.0%), type III AFP-supplemented (92.3%), and combination (89.7%) groups than in the non-supplemented control group (46.2%, p<0.05 for each). The proportions of non-apoptotic follicles were similar across the four groups. Conclusion: Supplementation of the vitrification and warming solutions with FfIBP, type III AFP, or the combination thereof was equally beneficial for the preservation of primordial follicles in vitrified mouse ovaries.

Immunohistological expression of cytochrome P450 1A2 (CYP1A2) in the ovarian follicles of prepubertal and pubertal rat

  • Hwang, Jong-Chan;Park, Byung-Joon;Kim, Hwan-Deuk;Baek, Su-Min;Lee, Seoung-Woo;Jeon, Ryoung-Hoon;Jang, Min;Bae, Seul-Gi;Yun, Sung-Ho;Park, Jin-Kyu;Kwon, Young-Sam;Kim, Seung-Joon;Lee, Won-Jae
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.35 no.4
    • /
    • pp.329-337
    • /
    • 2020
  • Cytochrome P450 1A2 (CYP1A2) is a member of the cytochrome P450 superfamily enzymes in mammals and plays a major role in metabolizing endogenous hormones in the liver. In recent days, CYP1A2 expression has been found in not only the liver but also other tissues including the pancreas and lung. However, little information is available regarding the expression of CYP1A2 in the ovary, in spite of the facts that the ovarian follicle growth and atresia are tightly associated with controls of endocrine hormonal networks. Therefore, the expression of CYP1A2 in the ovaries of prepubertal and pubertal rats was investigated to assess its expression pattern and puberty-related alteration. It was demonstrated that the expression level of CYP1A2 was significantly (p < 0.01) higher in the pubertal ovaries than prepubertal counterparts. At the ovarian follicle level in both groups, whereas CYP1A2 expression was less detectable in the primordial, primary and secondary follicles, the strongly positive expression of CYP1A2 was localized in the granulosa cell layers in the antral and pre-ovulatory follicles. However, the ratio of CYP1A2-positive ovarian follicle was significantly (p < 0.01) higher in the ovary of pubertal group (73.1 ± 3.1%) than prepubertal one (41.0 ± 10.5%). During the Immunofluorescence, expression of CYP1A2 was mainly localized in Fas-positive follicles, indicating the atretic follicles. In conclusion, these results suggested that CYP1A2 expression was mainly localized at the atretic follicular cells and affected by the onset of puberty. Further study is still necessary but we hypothesize that CYP1A2 expresses in the atretic follicles to metabolize residue of the reproductive hormones. These findings may have important implications for the fields of reproductive biology of animals.