• Title/Summary/Keyword: primary vortex

Search Result 76, Processing Time 0.027 seconds

Excessive Vibration of the Fan-duct Systems in 500 MW Power Plant Boilers Due to Inlet Cone Vortex (Inlet Cone Vortex에 의한 500 MW급 발전용 보일러 홴-덕트 시스템의 과대진동)

  • Kim, Cheol Hong;Ju, Young Ho;Byun, Hyung Hyun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.116-121
    • /
    • 2000
  • During the operation, fatigue failures and cracks of duct plate due to excessive duct vibration occurred in the fan-duct systems of fossil fueled boilers. We measured static pressure variation(pressure pulsation) in the outlet, and also measured vibration at the outlet duct of a centrifugal fan. It was found that strong pressure Pulsation caused by the inlet vortex occurred in inlet vane of centrifugal fan in the middle range of vane opening. Thus, excessive duct vibration is caused by strong pressure pulsation. In this paper, it is shown that the frequency and amplitude of pressure pulsation depend mainly on vane opening and are compared with duct vibration. Also, effective solution for reducing pressure pulsation and vibration are presented.

  • PDF

An Experimental Study on Flow Angle with Swirl in a Horizontal Circular Tube (수평 원통 관에서 선회를 동반한 유동각에 대한 실험적 연구)

  • Chang, Tae-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.4
    • /
    • pp.82-87
    • /
    • 2003
  • Flow angle with Swirl in a horizontal circular tube and a cylindrical annuli were experimentally studied for its visualization. This present investigation deals with flow angle, flow visualization studies and vortex core by using oil smoke and a hot wire anemometer for Re = 40,000 and 50000 at X/D = 41, 59 and 71 in a horizontal circular tube. In the swirl air flow, a vortex core was formed at high swirl intensity along the test tube. The flow angle and the vortex core depended on the swirl intensity along the test tube. The results of flow angles with swirl measured by flow visualization and hot wire reasonably agree with those of Sparrow One of the primary objectives of this research was to measure the flow angle with swirl in a cylindrical annuli along the test tube for different Reynolds numbers. The Reynolds number for these measurements ranged from 60,000 to 100,000 with L/D = a to 4.

  • PDF

A Study on the Vibration Phenomena of the Duct-fan Systems in Fossil Fueled Boilers: Inlet Vortex Induced Excessive Vibration (화력 발전용 보일러 Duct/Fan 시스템의 진동현상에 대한 연구 : Inlet Vortex에 의한 과대진동 사례)

  • Kim, Cheol-Hong;Ju, Young-Ho;Byun, Hyung-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.82-87
    • /
    • 2000
  • During the operation, fatigue failures and cracks of duct plate due to excessive duct vibration occurred in the fan-duct systems of fossil fueled boilers. We measured static pressure variation(pressure pulsation) in the outlet, and also measured vibration at the outlet duct of a centrifugal fan. It was found that strong pressure pulsation caused by the inlet vortex occurred in inlet vane of centrifugal fan in the middle range of vane opening. Thus, excessive duct vibration is caused by strong pressure pulsation. In this paper, it is shown that the frequency and amplitude of pressure pulsation depend mainly on vane opening and are compared with duct vibration. Also, effective solution for reducing pressure pulsation and vibration are presented.

  • PDF

Effects of Corrugation Angle on Local Heat/mass Transfer in Wavy Duct. (열교환기 내부 유로 꺾임각 변화에 따른 국소 열/물질전달 특성 고찰)

  • Jang, In-Hyuk;Hwang, Sang-Dong;Cho, Hyun-Hee
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.97-102
    • /
    • 2003
  • An experimental study is conducted to investigate the effects of duct corrugation angle on heat/mass transfer characteristics in wavy ducts by using a naphthalene sublimation technique. The corrugation angles of the wavy ducts are $145^{\circ}$ , $130^{\circ}$ and $115^{\circ}$ . and the Reynolds numbers based on the duct hydraulic diameter vary from 300 to 3,000. At the low $Re(Re{\leq}1000)$, high heat/mass transfer regions are formed by the secondary vortex flows called Taylor-Gortler vortices on both pressure-side and suction-side walls. At the high $Re(Re{\geq}1000)$, the effects of these secondary flows are vanished. As corrugation angle decreases, the local peak Sh induced by Taylor-Gertler vortices are increased and average Sh also enhanced. More pumping power (pressure loss) is required with the smaller corrugation angle due to the stronger secondary vortex flows.

  • PDF

Development of wind vortex shedding coefficients for a multisided cylinder structure

  • Chang, Byungik;Neill, Michael;Issa, Roy;Miller, Aaron
    • Wind and Structures
    • /
    • v.18 no.2
    • /
    • pp.181-194
    • /
    • 2014
  • A major problem with high-mast light poles is the effects that wind vortex shedding can have on the pole itself because of the lock-in phenomenon. It is desired that the coefficients in the AASHTO Standard Specifications ($5^{th}$ edition) for Structural Supports for Highway Signs, Luminaries, and Traffic Signals be analyzed and refined. This is for the belief that the span of the shapes of poles for which the coefficients are used is much too broad and a specific coefficient for each different shape is desired. The primary objective of this study is to develop wind vortex shedding coefficient for a multisided shape. To do that, an octagonal shape was used as the main focus since octagonal cross sectioned high-mast light poles are one of the most common shapes in service. For the needed data, many wind parameters, such as the static drag coefficient, the slope of aerodynamic lift coefficient, Strouhal number, the lock-in range of wind velocities producing vibrations, and variation of amplitude of vortex-induced vibration with Scruton number are needed. From wind tunnel experiments, aerodynamic parameters were obtained for an octagonal shape structure. Even though aerodynamic coefficients are known from past test results, they need to be refined by conducting further wind tunnel tests.

A Study on Treatment of CSOs by Vortex Separator and Continuous Fiber-Filter System (Vortex separator와 연속식 섬유사여과를 이용한 CSOs 처리연구)

  • Lee, Bum-Joon;Na, Ji-Hoon;Kim, Jin-Sung;Joo, Jae-Young;Bae, Yoon-Sun;Jung, In-Ho;Park, Chul-Hwi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.4
    • /
    • pp.443-451
    • /
    • 2010
  • This study was conducted to confirm the CSOs characteristics, and to estimate treatment efficiency of CSO treatment process. Flowrate was average $53,500m^3$/d, maximum $58,100m^3$/d during dry season, but after rain-fall, the flowrate was increased more than twice that of the dry season. And, water pollution concentrations, such as $COD_{Cr}$, SS, $BOD_5$, TN and TP of after rain-fall, were also increased. Thus, for more efficient treatment of pollutants during rainy season, The vortex separator and continuous fiber filter devices were used. From the results on particle range, removal efficiency of particle was 99.7% at the particle size range of $40{\sim}100{\mu}m$ but decreased as 55-80% at the below $40{\mu}m$. The removal efficiencies of $COD_{Cr}$, SS, TN and TP were approx. 70, 60, 70 and 50, respectively during the dry season and approx. 50, 50, 8 and 18% during the rainy season. Also, when compared with the primary sediment basin, $COD_{Cr}$, SS, TN and TP removal efficiencies were high. especially, at the case of TN and TP, TN was more removed than TP because of higher conversion factor value. But we needed more study for the injection of a coagulants to get more stable treatment efficiency for soluble pollutants. Consequently, This process can be used for CSOs treatment as well as replace the primary sedimentation basin during the dry season.

Investigation of crossflow features of a slender delta wing

  • Tasci, Mehmet O.;Karasu, Ilyas;Sahin, Besir;Akilli, Huseyin
    • Wind and Structures
    • /
    • v.31 no.3
    • /
    • pp.229-240
    • /
    • 2020
  • In the present work, the main features of primary vortices and the vorticity concentrations downstream of vortex bursting in crossflow plane of a delta wing with a sweep angle of Λ=70° were investigated under the variation of the sideslip angles, β. For the pre-review of flow structures, dye visualization was conducted. In connection with a qualitative observation, a quantitative flow analysis was performed by employing Particle Image Velocimetry (PIV). The sideslip angles, β were varied with four different angles, such as 0°, 4°, 12°, and 20° while angles of attack, α were altered between 25° and 35°. This study mainly focused on the instantaneous flow features sequentially located at different crossflow planes such as x/C=0.6, 0.8 and 1.0. As a summary, time-averaged and instantaneous non-uniformity of turbulent flow structures are altered considerably resulting in non-homogeneous delta wing surface loading as a function of the sideslip angle. The vortex bursting location on the windward side of the delta wing advances towards the leading-edge point of the delta wing. The trajectory of the primary vortex on the leeward side slides towards sideways along the span of the delta wing. Besides, the uniformity of the lift coefficient, CL over the delta wing plane was severely affected due to unbalanced distribution of buffet loading over the same plane caused by the variation of the sideslip angle, β. Consequently, dissimilarities of the leading-edge vortices result in deterioration of the mean value of the lift coefficient, CL.

Effects of Reynolds Number on Flow and Heat/Mass Characteristics Inside the Wavy Duct (Reynolds 수에 따른 꺾어진 덕트에서 열/물질전달 특성 고찰)

  • 장인혁;황상동;조형희
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.10
    • /
    • pp.809-820
    • /
    • 2003
  • The present study investigates effects of flow velocity on the convective heat/mass transfer characteristics in wavy ducts of a primary surface heat exchanger application. Local heat/mass transfer coefficients on the wavy duct sidewall are determined by using a naphthalene sublimation technique. The flow visualization technique is used to understand the overall flow structures inside the duct. The aspect ratio and corrugation angle of the wavy duct is fixed at 7.3 and 145$^{\circ}$ respectively, and the Reynolds numbers, based on the duct hydraulic diameter, vary from 100 to 5,000. The results show that there exist complex secondary flows and transfer processes resulting in non-uniform distributions of the heat/mass transfer coefficients on the duct side walls. At low Re (Re<1000), relatively high heat/mass transfer regions like cell shape appear on both pressure and suction side wall due to the secondary vortex flows called Taylor-Gortler vortices perpendicular to the main flow direction. However, at high Re (Re>1000), these secondary flow cells disappear and boundary layer type flow characteristics are observed on pressure side wall and high heat/mass transfer region by the flow reattachment appears on the suction side wall. The average heat/mass transfer coefficients are higher than those of the smooth circular duct due to the secondary flows inside wavy duct. And also friction factors are about two times greater than those of the smooth circular duct.

New Free Wake Method Development for Unsteady Aerodynamic Load on HAWT Blade and Experimental Analysis (풍력블레이드 비정상 공력하중 해석을 위한 자유후류기법 개발 및 실험적 연구)

  • Shin Hyungki;Park Jiwoong;Kim Hogeon;Lee Soogab
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.33-36
    • /
    • 2005
  • A critical issue in the field of the rotor aerodynamics is the treatment of the wake. The wake is of primary importance in determining overall aerodynamic behavior, especially, a wind turbine blade includes the unsteady air loads problem. In this study, the wake generated by blades are depicted by a free wake model to analyse unsteady loading on blade and a new free wake model named Finite Vortex Element(FVE hereafter) is devised in order to include a wake-tower interact ion. In this new free wake model, blade-wake-tower interaction is described by cutting a vortex filament when the filament collides with a tower. This FVE model is compared with a conventional free wake model and verified by a comparison with NREL and SNU wind tunnel model. A comparison with NREL and SNU data shows validity and effectiveness of devised FVE free wake model and an efficient.

  • PDF

A Study on the Vibration Phenomena of the Duct-fan Systems in Fossil Fueled Boilers : Inlet Vortex Induced Excessive Vibration (화력 발전용 보일러 덕트-홴 시스템의 진동현상에 대한 연구 : 입구측 와류에 의한 과대진동 사례)

  • 김철홍;주영호
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.3
    • /
    • pp.194-201
    • /
    • 2003
  • During the operation, fatigue failures and cracks of duct plate due to excessive duct vibration occurred in a fan-duct system of fossil fueled boilers. We measured static pressure variation (pressure pulsation) in the outlet, and also measured vibration at the outlet duct of a centrifugal fan. It was found that strong pressure pulsation caused by the inlet vortex occurred in inlet vane of centrifugal fan in the middle range of vane opening. Thus, excessive duct vibration is caused by strong pressure pulsation. In this Paper, it is shown that the frequency and amplitude of pressure pulsation depend mainly on vane opening and are compared with duct vibration. Also, effective solution for reducing pressure pulsation and vibration are presented.