• Title/Summary/Keyword: primary motion

Search Result 355, Processing Time 0.038 seconds

Auto-parametric resonance of framed structures under periodic excitations

  • Li, Yuchun;Gou, Hongliang;Zhang, Long;Chang, Chenyu
    • Structural Engineering and Mechanics
    • /
    • v.61 no.4
    • /
    • pp.497-510
    • /
    • 2017
  • A framed structure may be composed of two sub-structures, which are linked by a hinged joint. One sub-structure is the primary system and the other is the secondary system. The primary system, which is subjected to the periodic external load, can give rise to an auto-parametric resonance of the second system. Considering the geometric-stiffness effect produced by the axially internal force, the element equation of motion is derived by the extended Hamilton's principle. The element equations are then assembled into the global non-homogeneous Mathieu-Hill equations. The Newmark's method is introduced to solve the time-history responses of the non-homogeneous Mathieu-Hill equations. The energy-growth exponent/coefficient (EGE/EGC) and a finite-time Lyapunov exponent (FLE) are proposed for determining the auto-parametric instability boundaries of the structural system. The auto-parametric instabilities are numerically analyzed for the two frames. The influence of relative stiffness between the primary and secondary systems on the auto-parametric instability boundaries is investigated. A phenomenon of the "auto-parametric internal resonance" (the auto-parametric resonance of the second system induced by a normal resonance of the primary system) is predicted through the two numerical examples. The risk of auto-parametric internal resonance is emphasized. An auto-parametric resonance experiment of a ${\Gamma}$-shaped frame is conducted for verifying the theoretical predictions and present calculation method.

Effectiveness of endodontic retreatment using WaveOne Primary files in reciprocating and rotary motions

  • Patricia Marton Costa;Renata Maira de Souza Leal;Guilherme Hiroshi Yamanari;Bruno Cavalini Cavenago;Marco Antonio Hungaro Duarte
    • Restorative Dentistry and Endodontics
    • /
    • v.48 no.2
    • /
    • pp.15.1-15.7
    • /
    • 2023
  • Objectives: This study evaluated the efficiency of WaveOne Primary files (Dentsply Sirona) for removing root canal fillings with 2 types of movement: reciprocating (RCP) and continuous counterclockwise rotation (CCR). Materials and Methods: Twenty mandibular incisors were prepared with a RCP instrument (25.08) and filled using the Tagger hybrid obturation technique. The teeth were retreated with a WaveOne Primary file and randomly allocated to 2 experimental retreatment groups (n = 10) according to movement type: RCP and CCR. The root canals were emptied of filling material in the first 3 steps of insertion, until reaching the working length. The timing of retreatment and procedure errors were recorded for all samples. The specimens were scanned before and after the retreatment procedure with micro-computed tomography to calculate the percentage and volume (mm3) of the residual filling material. The results were statistically evaluated using paired and independent t-tests, with a significance level set at 5%. Results: No significant difference was found in the timing of filling removal between the groups, with a mean of 322 seconds (RCP) and 327 seconds (CCR) (p < 0.05). There were 6 instrument fractures: 1 in a RCP motion file and 5 in continuous rotation files. The volumes of residual filling material were similar (9.94% for RCP and 15.94% for CCR; p > 0.05). Conclusions: The WaveOne Primary files used in retreatment performed similarly in both RCP and CCR movements. Neither movement type completely removed the obturation material, but the RCP movement provided greater safety.

The Onset of Tayler-Görtler Vortices in Impulsively Decelerating Circular Flow

  • Cho, Eun Su;Kim, Min Chan
    • Korean Chemical Engineering Research
    • /
    • v.53 no.5
    • /
    • pp.609-613
    • /
    • 2015
  • The onset of instability induced by impulsive spin-down of the rigid-body flow placed in the gap between two coaxial cylinders is analyzed by using the energy method. In the present stability analysis the growth rate of the kinetic energy of the base state and also that of disturbances are taken into consideration. In the present system the primary flow is a transient, laminar one. But for the Reynolds number equal or larger than a certain one, i.e. $Re{\geq}Re_G$ secondary motion sets in, starting at a certain time. For $Re{\geq}Re_G$ the dimensionless critical time to mark the onset of vortex instabilities, ${\tau}_c$, is here presented as a function of the Reynolds number Re and the radius ratio ${\eta}$. For the wide gap case of small ${\eta}$, the transient instability is possible in the range of $Re_G{\leq}Re{\leq}Re_S$. It is found that the predicted ${\tau}_c$-value is much smaller than experimental detection time of first observable secondary motion. It seems evident that small disturbances initiated at ${\tau}_c$ require some growth period until they are detected experimentally.

Seismic Response of Arch Structure Subjected to Different Ground Motion (상이한 지반조건을 갖는 아치구조물의 지진응답 분석)

  • Kim, Gee-Cheol;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.1
    • /
    • pp.113-119
    • /
    • 2013
  • Spatial structures have the different dynamic characteristics from general rahmen structures. Therefore, it is necessary to accurately analyze dynamic characteristics and seismic response of spatial structure for seismic design of spatial structure. An arch structure is used as an example structure because it has primary characteristics of spatial structures. Multiple support excitation may be subjected to supports of a spatial structure because ground condition of spatial structures is different. In this study, the response analysis of the arch structure under multiple support excitation and simple support excitation is studied. By means of the pseudo excitation method, the seismic response is analyzed for long span spatial structure. It shows that the structural response is divided into two parts, ground displacement and structural dynamic response due to ground motion excitation. It is known that the seismic response of spatial structure under multiple support excitation and simple support excitation are the different in some case. Therefore, it has to be necessary to analyze the seismic response of spatial structure under multiple support excitation because the spatial structure supports may be different.

Research Trends on the Acupuncture Treatment of Shoulder Impingement Syndrome (어깨 충돌증후군의 침치료에 관한 연구 동향)

  • Yoon, Kwang Sik
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.32 no.5
    • /
    • pp.315-320
    • /
    • 2018
  • The purpose of this study is to investigate reasearch trend of acupuncture treatment on shoulder impingement syndrome. This study investigated the recent studies about acupuncture treatment for shoulder impingement syndrome via searching Korean and foreign electronic databases(Research Information Services, National Digital Science Library, Oriental Medicine Advanced Searching Integated Services, PubMed, China National Knowledge Infrastructure). The search term was searched by combining 'shoulder impingement sydrome', 'subacrominal pain', 'acupuncture', 'needle therapy', and was limited to the articles published from 2005 to 2017. 14 studies were found to be analyzed according to the type of study, the number of cases, the type of treatment, the instruments for assessment and published year. 14 studies were published since 2005, 6 case reports, 8 randomized controlled trials. In the treatment of shoulder impingement syndrome, treatments such as acupuncture, acupotomy, pharmacopuncture, laser acupuncture, combined treatment of exercise and rehabilitation were performed. Visual analogue scale(VAS), range of motion(ROM) and various questionnaires were used as primary assessments. In each study, acupuncture treatment was reported to have a significant effect in the pain, range of motion and disability of shoulder impingement syndrome. In order to ensure objective evidence on acupuncture treatment, large scale case reports and randomized controlled trials should be continued.

Algorithm for Arbitrary Point Tracking using Pyramidal Optical Flow (피라미드 기반 광류 추정을 이용한 영상 내의 임의의 점 추적 알고리즘)

  • Lee, Jae-Kwang;Park, Chang-Joon
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.11
    • /
    • pp.1407-1416
    • /
    • 2007
  • This paper describes an algorithm for arbitrary point tracking using pyramidal optical flow. The optical flow is calculated based on the Lucas-Kanade's optical flow estimation in this paper. The image pyramid is employed to calculate a big motion while being sensitive to a small motion. Furthermore, a rectification process is proposed to reduce the error which is increased as it goes down to the lower level of the image pyramid. The accuracy of the optical flow estimation was increased by using some constraints and sub-pixel interpolation of the optical flow and this makes our algorithm to track points in which they do not have features such as edges or corners. The proposed algorithm is implemented and primary results are shown in this paper.

  • PDF

Positioning and vibration suppression for multiple degrees of freedom flexible structure by genetic algorithm and input shaping

  • Lin, J.;Chiang, C.B.
    • Smart Structures and Systems
    • /
    • v.14 no.3
    • /
    • pp.347-365
    • /
    • 2014
  • The main objective of this paper is to develop an innovative methodology for the vibration suppression control of the multiple degrees-of-freedom (MDOF) flexible structure. The proposed structure represented in this research as a clamped-free-free-free truss type plate is rotated by motors. The controller has two loops for tracking and vibration suppression. In addition to stabilizing the actual system, the proposed feedback control is based on a genetic algorithm (GA) to seek the primary optimal control gain for tracking and stabilization purposes. Moreover, input shaping is introduced for the control scheme that limits motion-induced elastic vibration by shaping the reference command. Experimental results are presented, demonstrating that, in the control loop, roll and yaw angles track control and elastic mode stabilization. It was also demonstrated that combining the input shaper with the proportional-integral-derivative (PID) feedback method has been shown to yield improved performance in controlling the flexible structure system. The broad range of problems discussed in this research is valuable in civil, mechanical, and aerospace engineering for flexible structures with MDOM motion.

Use of Acoustic Analysis for Indivisualised Therapeutic Planning and Assessment of Treatment Effect in the Dysarthric Children (조음장애 환아에서 개별화된 치료계획 수립과 효과 판정을 위한 음향음성학적 분석방법의 활용)

  • Kim, Yun-Hee;Yu, Hee;Shin, Seung-Hun;Kim, Hyun-Gi
    • Speech Sciences
    • /
    • v.7 no.2
    • /
    • pp.19-35
    • /
    • 2000
  • Speech evaluation and treatment planning for the patients with articulation disorders have traditionally been based on perceptual judgement by speech pathologists. Recently, various computerized speech analysis systems have been developed and commonly used in clinical settings to obtain the objective and quantitative data and specific treatment strategies. 10 dysarthric children (6 neurogenic and 4 functional dysarthria) participated in this experiment. Speech evaluation of dysarthria was performed in two ways; first, the acoustic analysis by Visi-Pitch and a Computerized Speech Lab and second, the perceptual scoring of phonetic errors rates in 100 word test. The results of the initial evaluation served as primary guidlines for the indivisualized treatment planning of each patient's speech problems. After mean treatment period of 5 months, the follow-up data of both dysarthric groups showed increased maximum phonation time, increased alternative motion rate and decreased occurrence of articulatory deviation. The changes of acoustic data and therapeutic effects were more prominent in children with dysarthria due to neurologic causes than with functional dysarthria. Three cases including their pre- and post treatment data were illustrated in detail.

  • PDF

Reconstruction of Distal Phalangeal Soft Tissue Defects with Reverse Homodigital Artery Island Flap

  • Kim, Byung-Gook;Han, Soo-Hong;Lee, Ho-Jae;Lee, Soo-Hyun
    • Archives of Reconstructive Microsurgery
    • /
    • v.23 no.2
    • /
    • pp.65-69
    • /
    • 2014
  • Purpose: Soft tissue reconstruction is essential for recovery of finger function and aesthetics in any traumatic defect. The authors applied a reverse homodigital artery island flap for soft tissue defect on distal part of digits. The aim of this study is to evaluate the efficacy of the procedure. Materials and Methods: Seven cases of soft tissue defects of finger tip were included in this study. There were six male and one female, mean age was 43 years and mean follow-up period was 38 months. The length of flaps ranged from 2.0 to 2.5 cm and width ranged from 1.0 to 2.0 cm. Flap survival, postoperative complications were evaluated. Results: All flaps survived without loss. Donor sites were repaired with primary closure in five cases and skin graft in two cases. None of the patients showed significant complications and their average finger motion was $255^{\circ}$ in total active motion at the last follow-up. Conclusion: The authors suggest that the reverse homodigital artery island flap could be a versatile treatment option for the soft tissue defect on distal part of digits.

Dynamic Analysis of Monorail System with Magnetic Caterpillar (자석식 무한궤도를 가진 모노레일의 동역학 해석)

  • Won, Jong-Sung;Tak, Tae-Oh
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.47-55
    • /
    • 2012
  • This work deals with dynamic analysis of a monorail system with magnetic caterpillar where magnets are embedded inside each articulated element of the caterpillar, augmenting traction force of main rubber wheels to climb up slope up to 15 degree grade. Considerations are first given to determine stiffness of the primary and secondary suspension springs in order for the natural frequencies of car body and bogie associated with vertical, pitch, roll and yaw motion to be within generally accepted range of 1-2 Hz. Equations for calculating magnetic force needed to climb up given slope are derived, and a magnetic caterpillar system for 1/6 scale monorail is designed based on the derivation. To assess the hill climbing ability and cornering stability, and make sure smooth operation of the side and vertical guiding wheels which is critical for safety, a multibody model that takes into account of every component level design characteristics of car, bogie, and caterpillar is set up. Through hill climbing simulation and comparison with measurement of the limit slope, the validity of the analysis and design of the magnetic caterpillar system are demonstrated. Also by studying the curving behavior, maximum curving speed without rollover, functioning of lateral motion constraint system, the effects of geometry of guiding rails are studied.