• Title/Summary/Keyword: primary metabolism

Search Result 224, Processing Time 0.033 seconds

Effects of Conjugated Linoleic Acid on Adipocyte Secreted Proteins in vitro

  • Ha, Jung-Heun;Ahn, In-Sook;Byun, Jae-Min;Do, Hyung-Ki;Jung, Sun-Young;Jeong, Jae-Hong;Wahle, Klaus W.J.;Park, Kun-Young;Do, Myoung-Sool
    • Preventive Nutrition and Food Science
    • /
    • v.8 no.3
    • /
    • pp.253-259
    • /
    • 2003
  • Conjugated linoleic acid (CLA) is a class of positional, geometric conjugated dienoic isomers of linoleic acid (LA). CLA activates the immune system, protects against tumorigenesis, and reduces the incidence of atherosclerosis. Trans-10, cis-12 CLA has specific effects on lipid metabolism, it has been shown to reduce body fat gain and regulates some adipocyte secreted proteins in vivo and in vitro. Here we report that a CLA mixture affects cytokine secretion from rat primary adipocytes. Rat primary adipocytes were treated with 1 mM, 100 $\mu$M, 1 $\mu$M or 100 nM CLA mixture doses; and leptin, tumor necrosis factor alpha (TNF a ), interleukin-6 (IL-6) and glycerol levels in the medium were measured. Leptin secretion was lower, TNF $\alpha$ secretion higher and IL-6 secretion did not change in response to the CLA mixture. Leptin and TNF $\alpha$ secretions did not change with CLA mixture treatment in a dose-dependent manner. In addition, the CLA mixture did not appear to enhance lipolysis in rat primary adipocytes. In conclusion, our study demonstrates that the decrease in leptin and increase in TNF $\alpha$ secretion in adipocytes treated with CLA mixture may be due to the apoptotic effect and to a reduction in peroxisome proliferator-activated receptor gamma (PPAR ${\gamma}$ ) ligands.

Comparison of Single and Sandwich Collagen Gel on the Survival and Metabolism of Rat Hepatocytes Primary Cell Culture (쥐 간세포 일차배양 세포의 생존능과 대사능에 단층과 복층 콜라젠 젤이 미치는 영향의 비교)

  • 정미경;이혜경
    • KSBB Journal
    • /
    • v.11 no.4
    • /
    • pp.453-461
    • /
    • 1996
  • We compared the effects of two different systems of collagen matrix protein application on the survival and the biological functions of cultured primary hepatocytes. The rat liver primary hepatocytes were grown for approximately 40 days in vitro either on single collagen gel or between collagen sandwich gels. The morphological changes were observed for this culture period. While the hepatocytes grown on single gel began to die around at 7 days of culture, the cells grown between collagen gels still maintained their viability and began to die after 15 days. As markers for liver hepatic functions, we determined the biochemical activities of hepatocytes such as the secretions of albumin, fibronectin, fibrinogen, urea, and the reduction of secreted ammonia. We found that the rat hepatocytes cultured between collagen gels maintained fairly good biochemical functions than the hepatocytes cultured on single gel did. Therefore, the application of an extracellular matrix protein, collagen, in sandwich form was confirmed as a better choice for maintaining the functional hepatocytes culture for long term in vitro.

  • PDF

Effects of ethanol-induced p42/44 MAPkinase activity on IGF system in primary cultured rat hepatocytes (흰쥐의 배양된 간세포에서 ethanol에 의해 유도된 p42/44 MAPkinase가 IGF system에 미치는 효과)

  • Lee, Sun-Mi;Kim, Jong-Hoon;Kang, Chang-Won
    • Korean Journal of Veterinary Research
    • /
    • v.46 no.4
    • /
    • pp.315-322
    • /
    • 2006
  • Ethanol abuse is associated with liver injury, neurotoxicity, modulation of immune responses, and increased risk for cancer, whereas moderate ethanol consumption exerts protective effects against liver injury. However, the underlying signal transduction mechanisms of insulin-like growth factors (IGFs) which play an important regulatory role in various metabolism mechanisms are not well understood. We investigated the effects of ethanol-induced p42/44 activity on IGF-I secretion, IGF-I receptor and IGFBP-1 secretion using radioimmunoassay and western blotting in primary cultured rat hepatocytes. The p42/44 activity, IGF-I secretion and IGF-I receptor activity significantly accelerated compared to control at 10 and 30 min after 200 mM ethanol treatment, but then it became suppressed at 180 min. In contrast, IGFBP-1 secretion was inhibited compared to control at 30 min after 200 mM ethanol treatment, but increased at 180 min. The IGF-I secretion, IGF-I receptor and p42/44 activity at 30 min after 200 mM ethanol treatment accelerated with increasing ethanol concentration but IGFBP-1 secretion inhibited (p<0.05). The increased IGF-I secretion, inhibited IGFBP-1 secretion and IGF-IR activity by ethanol-induced temporal p42/44 activity at 30 min after ethanol treatment was blocked by treatment with PD98059. Alcohol dehydrogenase (ADH) inhibitor, 4-methylpyramazole blocked the changes of IGF-I secretion, IGFBP-1 secretion, and IGF-IR activity by ethanol-induced p42/44 activity at 30 and 180 min. Taken together, these results suggest that ethanol is involved in the modulation of IGF-I and IGFBP-1 secretion and IGF-IR activity by p42/44 activity in primary cultured rat hepatocytes. In addition, changing of p42/44 activity by ethanol was caused with ADH.

CD38 Inhibition Protects Fructose-Induced Toxicity in Primary Hepatocytes

  • Soo-Jin Lee;Sung-E Choi;Seokho Park;Yoonjung Hwang;Youngho Son;Yup Kang
    • Molecules and Cells
    • /
    • v.46 no.8
    • /
    • pp.496-512
    • /
    • 2023
  • A fructose-enriched diet is thought to contribute to hepatic injury in developing non-alcoholic steatohepatitis (NASH). However, the cellular mechanism of fructose-induced hepatic damage remains poorly understood. This study aimed to determine whether fructose induces cell death in primary hepatocytes, and if so, to establish the underlying cellular mechanisms. Our results revealed that treatment with high fructose concentrations for 48 h induced mitochondria-mediated apoptotic death in mouse primary hepatocytes (MPHs). Endoplasmic reticulum stress responses were involved in fructose-induced death as the levels of phosho-eIF2α, phospho-C-Jun-N-terminal kinase (JNK), and C/EBP homologous protein (CHOP) increased, and a chemical chaperone tauroursodeoxycholic acid (TUDCA) prevented cell death. The impaired oxidation metabolism of fatty acids was also possibly involved in the fructose-induced toxicity as treatment with an AMP-activated kinase (AMPK) activator and a PPAR-α agonist significantly protected against fructose-induced death, while carnitine palmitoyl transferase I inhibitor exacerbated the toxicity. However, uric acid-mediated toxicity was not involved in fructose-induced death as uric acid was not toxic to MPHs, and the inhibition of xanthine oxidase (a key enzyme in uric acid synthesis) did not affect cell death. On the other hand, treatment with inhibitors of the nicotinamide adenine dinucleotide (NAD)+-consuming enzyme CD38 or CD38 gene knockdown significantly protected against fructose-induced toxicity in MPHs, and fructose treatment increased CD38 levels. These data suggest that CD38 upregulation plays a role in hepatic injury in the fructose-enriched diet-mediated NASH. Thus, CD38 inhibition may be a promising therapeutic strategy to prevent fructose-enriched diet-mediated NASH.

Subcellular Localization of Capsaicin-Hydrolyzing Enzyme in Rat Hepatocytes (Capsaicin 가수분해효소의 흰쥐 간세포내 소재확인)

  • Park, Young-Ho;Lee, Sang-Sup
    • YAKHAK HOEJI
    • /
    • v.38 no.1
    • /
    • pp.12-19
    • /
    • 1994
  • Capsaicin(8-methyl-N-vanillyl-6-nonenamide) is the principal pungent component of Capsicum fruits. This work is directed to the capsaicin-hydrolyzing enzyme playing a key role in the rate limiting and critical step of capsaicin metabolism. In order to get precise information on the enzyme's subcellular location, rat liver homogenate was divided into six subcellular fractions by differential centrifugation technique: crude nuclear pellet, PNS(post nuclear supernatant) fraction, lysosomal pellet, cytosol, Tris wash fraction, micrisomes. Capsaicin-hydrolysing enzyme activity was analysed by high performance liquid chromatography(HPLC). This enzyme was found at the highest specific activity in the microsomal fraction and co-distributed with marker enzymes of the endoplasmic reticulum, NADPH-cytochrome c reductase and nucleoside diphosphatase. This is compatible with the result of ninhydrin color reaction of vanillylamine, primary metabolite of capsaicin hydrolysis, on thin layer chromatography(TLC). This enzyme is most active at pH $8.0{\sim}9.0$. Definite subcellular location of this enzyme will make it easy to proceed with further study.

  • PDF

Metabolic Characterization of the Corynebacterium glutamicum using DNA Microarray Technology

  • Jo, Gwang-Myeong;Jang, Jae-U;Kim, Seong-Jun;Park, Yeong-Hun
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.739-740
    • /
    • 2001
  • DNA microarray with a set of 37 Corynebacterium glutamicum genes encoding enzymes for primary metabolism of glycolysis, TCA cycle and lysine biosynthesis, anaplerosis etc was constructed on slide glass in triplicate. With this DNA microarray, metabolic characteristics of the lysine-producing strain was analyzed during different phase of the cultivation. The major differences in using glucose as a carbon source instead of sucrose was found in the anaplerolytic enzymes, which control the interconversion of C3 and C4 metabolites. Also, the expression profile of these major enzymes was found to be quite distinct among different phases of growth.

  • PDF

Characteristics of 14-3-3 Proteins and Their Role in Plant Immunity

  • Oh, Chang-Sik
    • The Plant Pathology Journal
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • Phosphorylation is a major post-translational modification of proteins that regulate diverse signal transduction pathways in eukaryotic cells. 14-3-3 proteins are regulatory proteins that bind to target proteins in a phosphorylation-dependent manner and have been shown to play an important role in plant growth and development, primary metabolism, and signal transduction. Because phosphorylation plays a critical role in signal transduction pathways to trigger plant immunity, involvement of 14-3-3 proteins in plant immunity has been suggested for a long time. Recent studies have provided new evidence to support a role for 14-3-3 proteins in plant immunity. This review will briefly discuss general characteristics of 14-3-3 proteins and their involvement in plant immunity.

IRON, COPPER, COBALT AND MANGANESE REQUIREMENTS IN MILK-FED CROSSBRED CALVES

  • Kaur, Harjit;Chopra, R.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.3 no.2
    • /
    • pp.103-106
    • /
    • 1990
  • A balance study was conducted to determine the requirements of iron, copper, cobalt and manganese in crossbred calves. Six calves were fed milk average 10 percent of their body weight and were supplemented with 15 g mineral mixture daily. A balance trial was conducted at $2\frac{1}{2}$ months of age. The primary route of excretion was through digestive tract as 99.87, 80.99, 77.27 and 99.94 percent of Fe, Cu, Co and Mn were excreted through faeces. The requirements of Fe, Cu, Co and Mn were computed using the respective mineral balance data and were found to be 169.60, 7.20, 4.48 and 8.89 mg/kg respectively.

Diagnosis and Treatment of Restless Leg Syndrome and Periodic Limb Movement of Sleep (하지불편 증후군과 주기성 사지운동장애의 진단과 치료)

  • Ham, Byung-Joo
    • Sleep Medicine and Psychophysiology
    • /
    • v.10 no.1
    • /
    • pp.26-31
    • /
    • 2003
  • Restless leg syndrome (RLS) and periodic limb movement of sleep (PLMS), often concurrent, come under diagnosed disorders of sleep and treatable condition. RLS symptoms are evoked in the limbs at rest and increase in the evening and during the night. PLMS is characterized by periodic episodes of repetitive limb movements caused by muscle contractions during sleep. RLS is often associated with a sleep complaint and PLMS. Both RLS and PLMS represent one of the most commonly encountered sleep disorders in a primary care setting. The circadian rhythm and the presence of PLMS cause sleep disturbances in RLS. The emphasis on pathophysiology includes consideration of central nervous system localization, neurotransmitter, and the role of iron metabolism. Dopaminergic agents are considered the treatment of choice for RLS and PLMS. With proper diagnosis and effective treatment patients' ability to fall asleep and maintain sleep improves, and their sense of well being increases.

  • PDF

Clinical Application of $^{18}F-FDG$ PET in Brain Tumors (뇌종양에서의 $^{18}F-FDG$ PET의 임상 이용)

  • Hong, Il-Ki;Kim, Jae-Seung
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.sup1
    • /
    • pp.1-5
    • /
    • 2008
  • Primary brain tumor accounts for 1.4% of entire cancer. For males between the ages of 15 and 34 years, central nervous system tumors account for the leading cause of cancer death. $^{18}F-FDG$ PET has been reported that it can provide important diagnostic information relating to tumor grading and differentiation from non- tumorous condition. In addition, the degree of FDG metabolism carries prognostic significance. By mapping the metabolic pattern of heterogeneous tumors, $^{18}F-FDG$ PET can aid in targeting for stereotactic biopsy by selecting the subregions within the tumor that are most hypermetabolic and potentially have the highest grade. According to clinical research data, FOG PET is expected to be a helpful diagnostic tool in the management of brain tumors.