• Title/Summary/Keyword: primary leaf

Search Result 220, Processing Time 0.024 seconds

Effect of ABA on Disassembly of Chloroplast during Senescence in Detached Leaves of Zea mays

  • Lee, Dong-Hee;Seo, Young-Hee;Kim, Young-Sang
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.3 no.3
    • /
    • pp.177-188
    • /
    • 1999
  • The effect of ABA on the chloroplast disassembly of Zea mays was investigated by measuring the changes in the relative distribution of chlorophyll(Chl) between the Chl-protein complexes in ABA treated and untreated sensecting leaves. The reaction center(RC)-light harvesting complex(LHC) regions were rapidly disassembled in the late stage of dark-induced senescence. Plus, during dark-induced senescence, the disassembly of a reaction center of P700 apoproteins containing mainly Chl a was faster than that of a reaction center of LHCI apoproteins containing both Chl a and Chl b. The increase in the relative distribution of Chl-protein complexes in the RC-Core2 in the late stage of senescence was due to the accumulation of core complexes such as CP47/43 and reaction centers including D1/D2 apoproteins disassembled from the RC-Corel containing the dimer of D1/D2 apoproteins. The LHCII region was more stable than the other Chl-protein complexes throughout leaf senscence. Accordingly, it is suggested that the preferential breakdown of Chl a gives rise to the disassembly of Chl a-binding proteins, particularly reaction centers and core complexes during dark-induced senescence, plus the primary target of the photosynthetic apparatus in sensecing leaves would seem to be Chl a along with the proteins associated with Chl a. The application of ABA promoted the disassembly of the P700 apoproteins in the PSI reaction center and the dimer of D1/D2 apoproteins, and the conversion of the trimeric LHCII apoprotein to the monometirc LHCII apoprotein during the middle stage of leaf senescence, thereby suggesting that ABA accelerates the disassembly of both Chl a-binding and Chl a+b-binding proteins, particularly Chl a-binding proteins during the middle stage of leaf senescence.

  • PDF

Occurrence of Brown Blight of Tea Plant Caused by Pseudomonas syringae pv. theae in Korea (Pseudomonas syringae pv. theae에 의한 차나무 갈색마름병 발생)

  • Choi, Jae-Eul;Cha, Sun-Kyung;Ryuk, Jin-Ah;Choi, Chun-Hwan;Nou, Ill-Sup
    • Research in Plant Disease
    • /
    • v.9 no.4
    • /
    • pp.213-216
    • /
    • 2003
  • A bacterial disease of tea plants(Camellia sinensis L.) was found in the graftage nursery grown under vinyl house conditions in Suncheon city, Korea, in spring of 2002. The primary symptoms of the disease include small, water-soaked and dark brown spot development on the young leaves. This spot gradually increases in size, especially taking on elongate shape along the midrib or vein of the leaf, and then turns black. The diseased leaves were defoliated easily. Ten strains were isolated from the infected leaf. Inoculation on tea leaf with these isolates produced the same symptoms of naturally infected plants. On the basis of stain reactions, morphological characterization, colony pattern, physiological and biochemical reactions, the bacterium was identified as Pseudomonas syringae pv. theae. This is the first report of brown blight of tea plant in Korea.

An Assesesment of Leaf Chlorophyll Concentration of Afforestation Tree Species in South-Eastern, Nigeria

  • Udeagha, Agbaeze Umazi;Shomkegh, Simon Alyegba;Daniel, Koko Sunday
    • Journal of Forest and Environmental Science
    • /
    • v.32 no.2
    • /
    • pp.205-211
    • /
    • 2016
  • Leaf chlorophyll content provides valuable information about physiological status of plants. However, fewer studies have investigated the difference in chlorophyll concentration in leaves of tropical afforestation tree species. Therefore, this study examines the difference in foliar chlorophyll contents of six tropical afforestation tree species namely: Tectona grandis, Pentaclethra macrophylla, Piptademiastrum africanum, Azadirachta indica, Brachystegia eurycoma and Gmelina arborea found in the relict forest in Umudike, South east, Nigeria. A single factor experiment in a completely randomised design in three replicates was employed to analyse the rate of leaf chlorophyll contents. Fisher's least significant different was used to test for significance in mean difference in foliar chlorophyll contents between tree species at 95% confidence interval using analysis of variance. The results of this study showed a significant difference in foliar chlorophyll concentration between the tree species with Tectona grandis having a higher chlorophyll concentration than other trees this could be as a result of its higher vegetative activity which increases its primary productivity followed by Pentaclethra macrophylla while Azadirachta indica having least the chlorophyll concentration. The study further revealed that other indigenous tree species like Piptademiastrum africanum and Brachystegia eurycoma have higher chlorophyll concentration. Further studies should be carry out to examine factors that have contributed informed the differences in the chlorophyll concentration of these trees species, thus this would broaden the understanding of their physiological status and equally encourage there conservation.

Anti-Cancer Effects of Imperata cylindrica Leaf Extract on Human Oral Squamous Carcinoma cell line SCC-9 in Vitro

  • Keshava, Rohini;Muniyappa, Nagesh;Gope, Rajalakshmi;Ramaswamaiah, Ananthanarayana Saligrama
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.4
    • /
    • pp.1891-1898
    • /
    • 2016
  • Imperata cylindrica, a tall tufted grass which has multiple pharmacological applications is one of the key ingredients in various traditional medicinal formula used in India. Previous reports have shown that I. cylindrica plant extract inhibited cell proliferation and induced apoptosis in various cancer cell lines. To our knowledge, no studies have been published on the effect of I. cylindrica leaf extract on human oral cancers. The present study was undertaken in order to evaluate the anticancer properties of the leaf extract of I. cylindrica using an oral squamous cell carcinoma cell line SCC-9 as an in vitro model system. A methanol extract from dried leaves of I. cylindrica (ICL) was prepared by standard procedures. Effects of the ICL extract on the morphology of SCC-9 cells was visualized by microscopy. Cytotoxicity was determined by MTT assay. Effects of the ICL extract on colony forming ability of SCC-9 cells was evaluated using clonogenic assay. Cell cycle analysis was performed by flow cytometry and induction of apoptosis was determined by DNA fragmentation assay. The ICL extract treatment caused cytotoxicity and induced cell death in vitro in SCC-9 cells in a dose-dependent manner. This treatment also significantly reduced the clonogenic potential and inhibited cell proliferation by arresting the cell cycle in the G2/M phase. Furthermore, DNA fragmentation assays showed that the observed cell death was caused by apoptosis. This is the first report showing the anticancer activity of the methanol extracts from the leaves of I. cylindrica in human oral cancer cell line. Our data indicates that ICL extract could be considered as one of the lead compounds for the formulation of anticancer therapeutic agents to treat/manage human oral cancers. The natural abundance of I. cylindrica and its wide geographic distribution could render it one of the primary resource materials for preparation of anticancer therapeutic agents.

Epidermal Features of the Nelumbo nucifera Tissues and Lotus Effect (연꽃식물 조직의 표피 특성과 연잎효과)

  • Kim, In-Sun
    • Applied Microscopy
    • /
    • v.42 no.2
    • /
    • pp.95-103
    • /
    • 2012
  • The cell surface sculpture of the plant epidermis has received great interest recently. It has also been an active area of research, as the biological microstructures of the surface, such as papillae and waxes, exhibit several unique properties, including self-cleaning character; namely the "Lotus effect" first described in the leaves of the lotus, Nelumbo nucifera. The Lotus effect is the phenomenon in which the super-hydrophobic and water-repellent nature of lotus leaves allow water drops to run off easily on the surface in a rolling and sliding motion thereby facilitating the removal of dirt particles. It is well-known that surface roughness on the micro- and nanoscale is a primary characteristic allowing for the Lotus effect. This effect is common among plants and is of great technological importance, since it can be applied industrially in numerous fields. In the present study, Nelumbo nucifera leaf and stem epidermal surfaces have been examined with a focus on the features of papillae and wax crystalloids. Both young and mature Nelumbo nucifera leaf epidermis demonstrated the Lotus effect on their entire epidermal surface. The central area of the upper epidermis, in particular, formed extremely papillose surfaces, with an additional wax layer, enabling greater water repellency. Despite the presence of wax crystalloids, epidermal surfaces of the lower leaf and stem lacking papillae, were much more easily wetted.

Changes in Cell Ca2+ Distribution in Loquat Leaves and Its Effects on Cold Tolerance

  • Zheng, Guohua;Pan, Dongming;Niu, Xianqian;Wu, Hanwen;Zhang, Jinbiao
    • Horticultural Science & Technology
    • /
    • v.32 no.5
    • /
    • pp.607-613
    • /
    • 2014
  • Calcium has been associated with improved cold tolerance in many crops. The aim of this study was to investigate the changes in leaf cell $Ca^{2+}$ distribution and cell organelle ultrastructure of loquat (Eriobotrya japonica Lindl.) plants in response to cold stress at $-3^{\circ}C$, using transmission electron microscopy (TEM). Two loquat accessions, Zaozhong 6 (a commercial cultivar) and oakleaf loquat (a wild relative) were used. Cold tolerance, as measured by leaf browning rate, was higher in oakleaf plants, and calcium treatment improved cold tolerance in both species. Cold stress first induced inward transport of $Ca^{2+}$ from the intracellular space. Then, the imported $Ca^{2+}$ was aggregated around the chloroplast membrane, finally entering the chloroplast. This pattern of $Ca^{2+}$ distribution in leaf cells occurred earlier in Zaozhong 6 than in the wild loquat. With increasing time of cold exposure, the chloroplast membranes of Zaozhong 6 leaves were damaged, blurred and even disappeared, while those of wild oakleaf loquat leaves maintained their structure longer. In Zaozhong 6, cold stress induced a clear cavity between poorly structured granal thylakoids and vesicles appearing inside the chloroplast, while in oakleaf leaves cold stress had little effect on the ultrastructure of chloroplasts (although chloroplast membranes looked blurred). Loquat leaves accumulated free calcium ions around chloroplasts in response to cold stress, with earlier calcium accumulation occurring in the cold-sensitive cultivar Zaozhong 6 than in wild oakleaf loquat. These results demonstrate that these two loquat species have differences in both cold tolerance and calcium accumulation dynamics.

Effect of Phosphate Fretilization Levels on the Agronomic Characters of Soiling Cowpea ( Vigna sinensis Endlicher ) (인산시용량 차이가 청예동부의 형질변화에 미치는 영향)

  • 진우종;조남기;양창범
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.12 no.3
    • /
    • pp.193-200
    • /
    • 1992
  • This study was carried out to determine the optimum fertilizer level of phosphate for maximum yield of soiling cowpea(Vigna sinensis Endlicher) in Cheju. The results obtained are summarized as follows:1. Plant length, fresh yield, stem and leaf weight per plant, node number of main stem, primary branch number per plant, pod number per plant and pod weight per plant increased with increasing of phosphate level regardless of growth stage.2. Plant length and node number of main stem did not increase after August 25, 40 days after planting. Leaf weight and fresh yield were greatest on August 25, and then reduced. 3. Stem weight the number of leaves and pods and pod weight per plant increased until September 13, 80 days after planting. 4. Increased level of phosphate delayed leaf weight decrease after August 25. 5. Root length and root weight per plant increased with increasing level of phosphate regardless of growth stage, and they did not increase after Augest 25. 6. Nodule number and nodule weight per plant also increased as phosphate rate increased regardlessof growth stage. Nodule number and nodule weight were greatest on August 5, and then rapidly decreased.

  • PDF

Growth and Yield Responses of Corn (Zea mays L.) as Affected by Growth Period and Irrigation Intensity

  • Nam, Hyo-Hoon;Seo, Myung-Chul;Cho, Hyun-Suk;Lee, Yun-Ho;Seo, Young-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.6
    • /
    • pp.674-683
    • /
    • 2017
  • The frequency and intensity of soil moisture stress associated with climate change has increasing, and the stability of field crop cultivation has decreasing. This experiment was conducted to investigate the effect of soil moisture management method on growth and yield of corn. Soil moisture was managed at the grade of WSM (wet soil moisture, 34.0~42.9%), OSM (optimum soil moisture, 27.8~34.0%), DSM (dry soil moisture, 20.3~27.8%), and ESM (extreme dry moisture, 16.6~20.3%) during V8 (8th leaf stage)-VT (tasseling stage). After VT, irrigation was limited. The treated amount of irrigation was 54.1, 47.7, 44.0 and 34.5% of total water requirement, respectively. The potential evapotranspiration during the growing period was $3.29mm\;day^{-1}$, and upward movement of soil water was estimated by the AFKAE 0.5 model in the order of ESM, DSM, OSM, and WSM. We could confirm this phenomenon from actual observations. There was no significant difference in leaf characteristics, dry matter, and primary productivity depending on the level of soil moisture, but leaf development was delayed and dry weight decreased in DSM. However, dry weight and individual productivity of DSM increased after irrigation withdrawal compared to that of OSM. In DSM, ear yield and number of kernels per ear decreased, but water use efficiency and harvest index were higher than other treatments. Therefore, it is considered that the soil moisture is concentratedly managed before the V8 period, the V8-VT period is controlled within the range of 100 to 500 kPa (20.3~27.8%), and no additional irrigation is required after the VT.

Evaluation of Growth Characteristics and Groundwater Levels for the Growth and Development of Sorghum (Sorghum bicolor L.) and Adzuki bean(Vigna anaularis L.)

  • Ryu, Hee-La;Adhikari, Arjun;Kang, Sang-Mo;Kim, Yoon-Ha;Lee, In-Jung
    • Journal of agriculture & life science
    • /
    • v.52 no.6
    • /
    • pp.13-25
    • /
    • 2018
  • Appropriate water level is the primary factor for the optimal yield of crop plants. The required water level varies according to the variety of the crops. In the present study, we investigated the optimum requirement of groundwater level(GWL) to grow sorghum and adzuki bean under paddy field soil. Here, we cultivated sorghum and adzuki bean using lysimeter filled with paddy soil under GWL 0 cm(NT) and GWL(20, 40 cm) where GWL 20 cm is maintained as a waterlogging condition. The plant growth promoting attributes were measured on the first day after treatment(0 DAT), 10 DAT and 20 DAT. The results showed that the growth parameter such as shoot length, leaf length, leaf width, and stem thickness of both sorghum and adzuki bean were constantly increased and were found higher at GWL 40 cm(except stem thickness and leaf width in sorghum at 20 DAT). The physiological parameters such as chlorophyll content and stomatal conductance were also found higher at GWL 40 cm in all DAT. In addition, the elements like P and K contents in adzuki bean, and Ca content in sorghum were constantly increased and was found higher in GWL 40 cm at all DAT. These results suggest that the GWL of 40 cm is appropriate for production of sorghum and adzuki bean especially in case of paddy soil.

Assessment of anatomical characteristics of the medicinal plant African cherry (Prunus africana) for its accurate taxonomic identification

  • Komakech, Richard;Yang, Sungyu;Song, Jun Ho;Choi, Goya;Kim, Yong-Goo;Okello, Denis;Omujal, Francis;Kyeyune, Grace Nambatya;Matsabisa, Motlalepula Gilbert;Kang, Youngmin
    • Journal of Plant Biotechnology
    • /
    • v.49 no.2
    • /
    • pp.139-144
    • /
    • 2022
  • The genus Prunus (family: Rosaceae) consists of over 400 plant species and exhibits vast biodiversity worldwide. Given the wide distribution of this genus, its taxonomic classification is important. Anatomical characteristics are conserved and stable and can therefore be used as an important tool for the taxonomic characterization of plants. Therefore, this study aimed to assess and document the anatomical characteristics of the leaf, stem, and seed of P. africana using micrographs and photographs for possible use in the identification, quality control, and phylogenetic analysis of the species. The anatomical sections of a young stem revealed a cortex consisting of isodiametric parenchyma cells, druse crystals, primary vascular bundles, and pith. The mature stem bark majorly consisted of the rhytidome, with the periderm densely arranged in multiple layers; a cluster of stone cells; and sclerenchyma. The leaf sections were hypostomatic, with stomata sizes ranging from 18.90-(22.34)-26.90 × 15.41-(18.40)-21.22 ㎛. The leaf sections showed the presence of characteristic druse crystals, vascular bundles, and mesophyll layers. The pericarp contained the epicarp, mesocarp, and endocarp, with their thickness being approximately 350-400, 300-350, and 30-50 ㎛, respectively. In addition, it contained a seed testa with a thickness of approximately 50-60 ㎛. The morphological and anatomical characteristics observed in P. africana leaves, stems, and seeds in this study could serve as useful data for the taxonomic identification of this species.