• Title/Summary/Keyword: primary element

Search Result 760, Processing Time 0.022 seconds

EVALUATION OF THERMAL DIFFUSION IN LOWER End PRIMARY MOLAR WITH THERMOGRAPHY AND FINITE ELEMENT ANALYSIS (Thermography와 유한요소분석법을 이용한 하악 제2유구치의 열확산도 평가)

  • Park, Hee-Seung;Kim, Yong-Kee;Kwon, Soon-Won;Kim, Jong-Soo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.29 no.4
    • /
    • pp.519-528
    • /
    • 2002
  • It is not a rare occasion that certain dental procedures involving tooth reduction being peformed under inadequate water cooling due to a variety of reasons. This situation could possibly inflict the critical insult to the pulpal tissue of indicated tooth. The purpose of this experiment was to study the pattern of diffusion of external heat produced during routine dental procedures into the pulpal tissue. 30 stone blocks containing three lower second primary molars were used for certain restorative procedures and the temperature of the indicated tooth surface was measured by thermography(Inframetrics 600) and further used as a baseline data for the finite element analysis model fabrication designed in order to evaluate the pattern of thermal diffusion. The ranges of highest surface temperature measured from several dental procedures under water cooling and non-water cooling were $30.8^{\circ}C{\sim}43.6^{\circ}C$ and $51.2^{\circ}C{\sim}103.4^{\circ}C$ respectively. Among procedures studied, crown preparation showed the highest value and amalgam removal showed the lowest. Comparisons between data measured under water cooling and non-water cooling conditions have shown the statistically significant difference(p<0.05). All the non-cooling conditions have shown the relatively larger increment of temperature change at the pulp horn area than the cooling conditions. The results of this study strongly indicate that the water coolant is the essential element in restorative procedures for the maintenance of healthy pulp. Further related studies involving more procedures and conditions are recommended.

  • PDF

A Study on the Effect of Ca and P on the Microstructure in Solidification of Al-7wt%Si-0.3wt%Mg Alloy (Al-7wt%Si-0.3wt%Mg 합금의 응고시 미세조직에 미치는 Ca 및 P의 영향에 관한 연구)

  • Kwon, Il-Soo;Kim, Jeong-Ho;Kim, Kyoung-Min;Yoon, Eui-Pak
    • Journal of Korea Foundry Society
    • /
    • v.18 no.4
    • /
    • pp.349-356
    • /
    • 1998
  • In this study, the influence of impurity element Ca, P on solidification behavior and morphology of eutectic silicon was examined by observation of microstructure and by DSC analysis. In the case of 1.3 ppm P, eutectic Si was fine and fibrous when the added amount of Ca was 500 ppm, However, the modification of eutectic Si was depressed by formation of polygonal Ca-Si compounds when the addition amount of Ca was greater than 1000 ppm. The addition of Ca 500 ppm depressed the primary and eutectic temperature. The primary and eutectic temperature were depressed with Ca 500 ppm but rather ascended when the addition amount of Ca was more than 1000 ppm. When the content of P was 17.5 ppm, eutectic Si had modified morphology with Ca addition. DAS was increased, the primary temperature was ascended and eutectic temperature was depressed with Ca added. Eutectic Si appeared as coarse flake phase and DAS was decreased with the increase of P content. The existence of P in the melt depressed the primary temperature and ascended eutectic temperature.

  • PDF

Improvement of Wear Resistance and Formation of Si Alloyed Layer on Aluminum Alloy by PTA Process (PTA법에 의한 Al 합금표면의 Si 합금층 형성과 내마모성 개선)

  • ;;松田福久;中田一博
    • Journal of Welding and Joining
    • /
    • v.15 no.5
    • /
    • pp.134-143
    • /
    • 1997
  • The formation of thick alloyed layer with high Si content have been investigated on the surface of Al alloy (A5083) plate by PTA process with Si powder. Hardening characteristics and wear resistance of alloyed layer was examined in relation to the microstructure of alloyed layer. Thick hardened layer in mm-order thickness on the surface of A5083 plate can be formed by PTA process with wide range of process condition by using Si powder as alloying element because of eutectic reaction of Al-Si binary alloy. High temperature and rapid solidification rate of molten pool, which are features of PTA process, enable the formation of high Si content alloyed layer with uniform distribution of fine primary Si paticle. High plasma arc current was beneficial to make the alloyed layer with smooth surface appearance in wide range of powder feeding rate, because enough volume of molten pool was necessary make alloyed layer. Uniform dispersion of fine primary Si particle with about 30${\mu}{\textrm}{m}$ in particle size can be obtained in layer with Si content ranging from 30 to 50 mass %. Hardness of alloyed layer increased with increasing Si content, but increasing rate of hardness differed with macrostructure of alloyed layer. Wear resistance of alloyed layer depended on $V_{si}$(volume fraction of primary Si) and was remarkably improved to two times of base metal at 20-30% $V_{si}$ without cracking, but no more improvement was obtained at larger $V_{si}$.

  • PDF

Identification of nonregular indication according to change of grain size/surface geometry in nuclear power plant (NPP) reactor vessel (RV)-upper head alloy 690 penetration

  • Kim, Kyungcho;Kim, Changkuen;Kim, Hunhee;Kim, Hak-Joon;Kim, Jin-Gyum;Jhung, Myungjo
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1524-1536
    • /
    • 2017
  • During the fabrication process of reactor vessel head penetration (RVHP), the grain size of the tube material can be changed by hot or cold work and the inner side of the tube can also be shrunk due to welding outside of the tube. Several nonregular time-of-flight diffraction (TOFD) signals were found because of deformed grains. In this paper, an investigation of nonregular TOFD indications acquired from RVHP tubes using experiments and computer simulation was performed in order to identify and distinguish TOFD signals by coarse grains from those by Primary Water Stress Corrosion Crack (PWSCC). For proper understanding of the nonregular TOFD indications, microstructural analysis of the RVHP tubes and prediction of signals scattered from the grains using Finite Element Method (FEM) simulation were performed. Prediction of ultrasonic signals from the various sizes of side drilled holes to find equivalent flaws, determination of the size of the nonregular TOFD indications from the coarse grains, and experimental investigation of TOFD signals from coarse grain and shrinkage geometry to identify PWSCC signals were performed. From the computer simulation and experimental investigation results, it was possible to obtain the nonregular TOFD indications from the coarse grains in the alloy 690 penetration tube of RVHP; these nonregular indications may be classified as PWSCC. By comparing the computer simulation and experimental results, we were able to confirm a clear difference between the coarse grain signal and the PWSCC signal.

Analysis of Overlay Weld Effect on Preventing PWSCC in Dissimilar Metal Weld (이종금속 용접부의 일차수응력부식균열 방지를 위한 예방정비 용접 효과 분석)

  • Lee, Seung-Gun;Oh, Chang-Kyun;Park, Heung-Bae;Jin, Tae-Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.1
    • /
    • pp.97-101
    • /
    • 2010
  • PWSCC(Primary Stress Corrosion Cracking) in Alloy 82/182 butt welds is the problem affecting safety and integrity of nuclear power plant. PWSCC can be occurred in the area that is at high magnitude of tensile residual stress, such as Alloy 82/182 dissimilar metal welds in PZR(pressurizer) nozzles. There have been a number of incidents recently at the dissimilar metal welds in overseas nuclear power plants. Overlay weld is the one of the effective methods to decrease tensile residual stress of inside surface, which will result in preventing PWSCC. In this paper, overlay weld conditions on the purpose of preventing PWSCC was explained and the benefit of the overlay weld was confirmed performing finite element analysis.

Investigation on Effect of Distance Between Two Collinear Circumferential Surface Cracks on Primary Water Stress Corrosion Crack Growth in Alloy 600TT Steam Generator Tubes (Alloy 600TT 증기발생기 전열관내 일렬 원주방향 표면 일차수응력 부식균열 성장에 미치는 균열 간격의 영향 고찰)

  • Heo, Eun-Ju;Kim, Jong-Sung;Jeon, Jun-Young;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.3
    • /
    • pp.269-273
    • /
    • 2015
  • The study investigated the effect of the distance between two collinear circumferential surface cracks on the primary stress corrosion crack (PWSCC) growth in alloy 600TT steam generator tubes using a finite element damage analysis based on the PWSCC initiation model and macroscopic phenomenological damage mechanics approach. The damage analysis method was verified by comparing the results to the previous study results. The verified method was applied to collinear circumferential surface PWSCCs. As a result, it was found that the collinear cracks showed earlier coalescence and penetration times than the a single crack, and the times increased with the distance. In addition, it is expected that penetration may occur before coalescence of two cracks if they are more than a specific distance apart.

A Study of the Buckling/plastic Collapse Behaviour of Ship Plates with Secondary Buckling (2차좌굴을 포함하는 선체판의 탄소성거동에 관한 연구)

  • Ko, Jae-Yong;Lee, Don-Chul;Yu, Young-Hun;Cho, Young-Tae;Park, Sung-Hyeon
    • Journal of Navigation and Port Research
    • /
    • v.26 no.1
    • /
    • pp.50-54
    • /
    • 2002
  • The plate bucking is very important design criteria when the ship is composed of high tensile steel plates. The structures under the action of excessive exhibit local failure associated with bucking until they reach the ultimate limit state as a whole. Precise assessment of the behaviour of plate above primary buckling load is important. In this connection, series of elastic plastic large deflection analyses are performed on rectangular plates with aspect ratio 1.4 applying the finite element method. In this paper, the buckling/plastic collapse behavior of ship plates with secondary buckling is investigated. It has found that the other deflection componentes also increase with the increase of compressive load above the primary buckling load.

A basic study on the diagnostic values of facial color and shape (얼굴의 진단적인 가치에 대한 기초적 연구)

  • Kim, Gyeong Cheol;Lee, Jeong-Won
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.22 no.1
    • /
    • pp.19-31
    • /
    • 2018
  • For the purpose of the basic educated-establishment on the diagnostic methods of "facial color and shape which reflect human's spiritual essence and personality", we study on the diagnostic value and application of the human face. The study's domain is divided the form and color of human face. And the form and color of human face is respectively observed the diagnostic value and contents. The form of human face reflect plenty the information of the mankind, and the observation of the face is applied to the "Physiognomie" refering to the external features of humans. Therefore the diagnosis on the form of human face is the primary factor in the grouping of five-element human, the discrimination of the Sasang constitution, and the classification of Hyunsang type. The color of human face reflect the physical information of internal organs and the pathological change of disease, therefore we examine the region, character and grade of disease by the inspection of complexion including the changes of color and luster of the facial skin. The inspection on the color is also the primary factor in the grouping of five-element human, the classification of Hyunsang and the differentiation of syndromes. The value of the inspection of complexion including the changes of color and form of the face is widely known. In the future, we think, we need to study more about the theory of the diagnostic value and application of the human face.

  • PDF

A Three-Dimensional Finite Element Study of Interface Micromotion in a Non-Cement Total Hip stem (FEM 3차원 모델을 이용한 인공관절 대퇴 Stem 경계면의 미세운동 분석)

  • Kim, Sung-Kon;Choi, Hyung-Yun;Chae, Soo-Won
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.1
    • /
    • pp.61-70
    • /
    • 1996
  • In cementless total hip arthroplasty(THA), an initial stability of the femoral component is mandatory to achieve bony inyowth and secondary long term fixation. Primary stability of the femoral component can be obtained by minimizing the magnitude of relative micromotions at bone stem interface. An accurate evaluation of interf'ace micromotion and stress/strain fields in the bone-implant system may be relevant for better understanding of clinical situations and improving THA design. Recently finite element method(FEM) was introduced in'orthopaedic research field due to its unique capacity to evaluate stress in structure of complex shape, loading and material behavior. The authors developed the 3-dimensional finite element model of proximal femur with $Multilock^{TM}$ stem of 1179 blick elements to analyse the micromotions and mechanical behaviors at the bone-stem inteface in early post-operative period for the load simulating single leg stance. The results indicates that the values of relative motion for this well fit stem were $150{\mu}m$ in maximum $82{\mu}m$ in minimum and the largest relative motion was developed in medial region of Proximal femur and in anterior-posterior direction. The motion in the proximal bone was much greater than in the distal bone and the stress pattern showed high stress concentration on the cortex near the tip of the stem. These findings indicate that the loading on the hip joint in the early postoperative situation before achieving bony ingrowth could produce large micromotion of $150{\mu}m$ and clinicaly non-cemented THA patient should not be allowed weight bearing strictly early in the postoperative period.

  • PDF

A new methodology development for flood fragility curve derivation considering structural deterioration for bridges

  • Lee, Jaebeom;Lee, Young-Joo;Kim, Hyunjun;Sim, Sung-Han;Kim, Jin-Man
    • Smart Structures and Systems
    • /
    • v.17 no.1
    • /
    • pp.149-165
    • /
    • 2016
  • Floods have been known to be one of the main causes of bridge collapse. Contrary to earthquakes, flood events tend to occur repeatedly and more frequently in rainfall areas; flood-induced damage and collapse account for a significant portion of disasters in many countries. Nevertheless, in contrast to extensive research on the seismic fragility analysis for civil infrastructure, relatively little attention has been devoted to the flood-related fragility. The present study proposes a novel methodology for deriving flood fragility curves for bridges. Fragility curves are generally derived by means of structural reliability analysis, and structural failure modes are defined as excessive demands of the displacement ductility of a bridge under increased water pressure resulting from debris accumulation and structural deterioration, which are known to be the primary causes of bridge failures during flood events. Since these bridge failure modes need to be analyzed through sophisticated structural analysis, flood fragility curve derivation that would require repeated finite element analyses may take a long time. To calculate the probability of flood-induced failure of bridges efficiently, in the proposed framework, the first order reliability method (FORM) is employed for reducing the required number of finite element analyses. In addition, two software packages specialized for reliability analysis and finite element analysis, FERUM (Finite Element Reliability Using MATLAB) and ABAQUS, are coupled so that they can exchange their inputs and outputs during structural reliability analysis, and a Python-based interface for FERUM and ABAQUS is newly developed to effectively coordinate the fragility analysis. The proposed framework of flood fragility analysis is applied to an actual reinforced concrete bridge in South Korea to demonstrate the detailed procedure of the approach.