• Title/Summary/Keyword: primary element

Search Result 760, Processing Time 0.032 seconds

Low Frequency Vibration Energy Harvester Using Stopper-Engaged Dynamic Magnifier for Increased Power and Wide Bandwidth

  • Halim, Miah Abdul;Kim, Dae Heum;Park, Jae Yeong
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.707-714
    • /
    • 2016
  • We present a piezoelectric energy harvester with stopper-engaged dynamic magnifier which is capable of significantly increasing the operating bandwidth and the energy (power) harvested from a broad range of low frequency vibrations (<30 Hz). It uses a mass-loaded polymer beam (primary spring-mass system) that works as a dynamic magnifier for another mass-loaded piezoelectric beam (secondary spring-mass system) clamped on primary mass, constituting a two-degree-of-freedom (2-DOF) system. Use of polymer (polycarbonate) as the primary beam allows the harvester not only to respond to low frequency vibrations but also generates high impulsive force while the primary mass engages the base stopper. Upon excitation, the dynamic magnifier causes mechanical impact on the base stopper and transfers a secondary shock (in the form of impulsive force) to the energy harvesting element resulting in an increased strain in it and triggers nonlinear frequency up-conversion mechanism. Therefore, it generates almost four times larger average power and exhibits over 250% wider half-power bandwidth than those of its conventional 2-DOF counterpart (without stopper). Experimental results indicate that the proposed device is highly applicable to vibration energy harvesting in automobiles.

A Study on the Formative Elements of Neo-plasticism Applied on Contemporary Fashion (현대패션에 응용된 신조형주의의 조형요소에 관한 연구 - 몬드리안 회화를 중심으로 -)

  • Jeong, Kyung-Hee;Bae, Soo-Jeong
    • Korean Journal of Human Ecology
    • /
    • v.9 no.1
    • /
    • pp.51-61
    • /
    • 2006
  • The purpose of this study is to examine the relation between the trend of art and fashion which predominate a certain time. In order to achieve this goal, this study intends to analyze how plasticity found in Mondrian's pictures are applied to modern fashion with its focus on formative elements. Mondrian was ahead of abstractionism, a major trend of contemporary art, and defined the theory of neo-plasticism. The theory of neo-plasticism defined by Mondrian is characterized by the limited expression of lines and shapes by using only vertical and horizontal straight lines, and right angles and four-sided figures weaved by the lines, and the use of achromatic color(black, white, and gray) in three primary colors(red, blue, and yellow). Based on his theory, he fully displayed the world of geometric abstraction. Mondrian's formative elements which have been applied in modern fashion can be divided into shape and color, For the element of shape, first, horizontal and vertical lines have been applied to patterns, trimmings, detail, and plane of textiles through simplification of design, representing proportion, balance, and stress in a silhouette, Second, plane and diamond shapes made of horizontal and vertical lines have been applied to textiles or patterns with uniqueness. For the element of color, first, three primary colors and achromatic colors are used to seek the aesthetics of balance and harmony that are produced in the strain of conflict through brightness, chroma, and complementary colors, Second, primary colors of high chroma and brightness which are much stronger than pictures are used to express a modern sense. Formative elements of neo-plasticism, which have been applied to modern fashion suggested by this study, are connected with the trend of art contemporary designers have borrowed, Accordingly, this study will become a very helpful material which provides designers with original ideas in developing materials and patterns which connect design with art.

  • PDF

J-Integral Estimate for Circumferential Cracked Pipes Under Primary and Secondary Stress in R6, RCC-MR A16 (원주방향 균열 배관에 대한 R6, RCC-MR A16 코드에 의한 1,2 차 복합 하중하에서 J-적분 비교)

  • Nam, Hyun Suk;Oh, Chang Young;Kim, Yun Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.5
    • /
    • pp.631-640
    • /
    • 2013
  • This paper provides a comparison of the J-integral estimation method under combined primary and secondary stress in the R6, RCC-MR A16 code. The comparisons of each code are based on finite element analysis using ABAQUS with regard to the crack shape, crack depth, and magnitude of secondary load. The estimate of the R6 code is conservative near $L_r=1$, and that of the RCC-MR A16 code is conservative near $L_r=0$. As a result, this paper proposes a modified method of J-integral estimation in the R6, RCC_MR A16 code. The J-integral using the modified method corresponds to the finite element analysis result.

Welding Residual Stress Distributions for Dissimilar Metal Nozzle Butt Welds in Pressurized Water Reactors (가압경수로 노즐 맞대기 이종금속용접부의 용접잔류응력 예측)

  • Kim, Ji-Soo;Kim, Ju-Hee;Bae, Hong-Yeol;Oh, Chang-Young;Kim, Yun-Jae;Lee, Kyung-Soo;Song, Tae-Kwang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.2
    • /
    • pp.137-148
    • /
    • 2012
  • In pressurized water nuclear reactors, dissimilar metal welds are susceptible to primary water stress corrosion cracking. To access this problem, accurate estimation of welding residual stresses is important. This paper provides general welding residual stress profiles in dissimilar metal nozzle butt welds using finite element analysis. By introducing a simplified shape for dissimilar metal nozzle butt welds, changes in the welding residual stress distribution can be seen using a geometry variable. Based on the results, a welding residual stress profile for dissimilar metal nozzle butt welds is proposed that modifies the existing welding residual stress profile for austenitic pipe butt welds.

Recycling of Copper Scrap (동스크랩의 리사이클링)

  • Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.28 no.3
    • /
    • pp.3-14
    • /
    • 2019
  • Copper is one of the first metals utilized by humankind about 11,500 years ago. But copper is not plentiful metallic element in the earth's crust. Copper has a high thermal and electric conductivity and is relatively corrosion resistant. In principle copper is virtually 100 % recyclable as an element without loss of quality. The recycling of copper scrap reduces the energy consumption and environmental burden, comparing to the primary metal production. Currently, approximately 30% of the global copper supply provides by recycling. Copper scrap is smelted in primary and secondary smelter. Type of furnace and process steps depend on the quality and grade of scrap. Depending on copper content of the secondary raw material, refining is required, which is usually done through electrorefining. This work provides an overview of the primary copper production and recycling process.

Analysis of Simple Creep Stress Calculation Methods for Creep Life Assessment (크리프 수명 평가를 위한 간략 크리프 응력 산출 방법론 분석)

  • Seo, Jun Min;Lee, Han Sang;Kim, Yun Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.8
    • /
    • pp.703-709
    • /
    • 2017
  • Creep analysis takes much more time than elastic or elastic-plastic analysis. In this study, we conducted elastic and elastic-plastic analysis and compared the results with creep analysis results. In the elastic analysis, we used primary stress, which can be classified by the $M{\alpha}-tangent$ method and stress intensities recommended in the ASME code. In the elastic-plastic analysis, we calculated the parameters recommended in the R5 code. For the FE models, a bending load, uniaxial load, and biaxial load were applied to the cross shaped welded plate, and a bending load and internal pressure were applied to the elbow pipe. To investigate the element size sensitivity, we conducted FE analysis for various element sizes for the cases where bending load was applied to the cross shaped welded plate. There was no significant difference between the creep stress and the alternative methods; however, in the $M{\alpha}-tangent$ method, the results were affected by the element size.

Regulation of Hepatic Gluconeogenesis by Nuclear Receptor Coactivator 6

  • Oh, Gyun-Sik;Kim, Si-Ryong;Lee, Eun-Sook;Yoon, Jin;Shin, Min-Kyung;Ryu, Hyeon Kyoung;Kim, Dong Seop;Kim, Seung-Whan
    • Molecules and Cells
    • /
    • v.45 no.4
    • /
    • pp.180-192
    • /
    • 2022
  • Nuclear receptor coactivator 6 (NCOA6) is a transcriptional coactivator of nuclear receptors and other transcription factors. A general Ncoa6 knockout mouse was previously shown to be embryonic lethal, but we here generated liver-specific Ncoa6 knockout (Ncoa6 LKO) mice to investigate the metabolic function of NCOA6 in the liver. These Ncoa6 LKO mice exhibited similar blood glucose and insulin levels to wild type but showed improvements in glucose tolerance, insulin sensitivity, and pyruvate tolerance. The decrease in glucose production from pyruvate in these LKO mice was consistent with the abrogation of the fasting-stimulated induction of gluconeogenic genes, phosphoenolpyruvate carboxykinase 1 (Pck1) and glucose-6-phosphatase (G6pc). The forskolin-stimulated inductions of Pck1 and G6pc were also dramatically reduced in primary hepatocytes isolated from Ncoa6 LKO mice, whereas the expression levels of other gluconeogenic gene regulators, including cAMP response element binding protein (Creb), forkhead box protein O1 and peroxisome proliferator-activated receptor γ coactivator 1α, were unaltered in the LKO mouse livers. CREB phosphorylation via fasting or forskolin stimulation was normal in the livers and primary hepatocytes of the LKO mice. Notably, it was observed that CREB interacts with NCOA6. The transcriptional activity of CREB was found to be enhanced by NCOA6 in the context of Pck1 and G6pc promoters. NCOA6-dependent augmentation was abolished in cAMP response element (CRE) mutant promoters of the Pck1 and G6pc genes. Our present results suggest that NCOA6 regulates hepatic gluconeogenesis by modulating glucagon/cAMP-dependent gluconeogenic gene transcription through an interaction with CREB.

Finite Element Analysis of Stress and Strain Distribution on Thin Disk Specimen for SCC Initiation Test in High Temperature and Pressure Environment (고온 고압 응력부식균열 개시 시험용 디스크 시편의 응력과 변형에 대한 유한요소 해석)

  • Tae-Young Kim;Sung-Woo Kim;Dong-Jin Kim;Sang-Tae Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.44-54
    • /
    • 2023
  • The rupture disk corrosion test (RDCT) method was recently developed to evaluate stress corrosion cracking (SCC) and was found to have great potential for the real-time detection of SCC initiation in a high temperature and pressure environment, simulating the primary water coolant of pressurized water reactors. However, it is difficult to directly measure the stress applied to a disk specimen, which is an essential factor in SCC initiation. In this work, finite element analysis (FEA) was performed using ABAQUSTM to calculate the stress and deformation of a disk specimen. To determine the best mesh design for a thin disk specimen, hexahedron, hex-dominated, and tetrahedron models were used in FEA. All models revealed similar dome-shaped deformation behavior of the disk specimen. However, there was a considerable difference in stress distribution in the disk specimens. In the hex-dominated model, the applied stress was calculated to be the maximum at the dome center, whereas the stress was calculated to be the maximum at the dome edge in the hexahedron and tetrahedron models. From a comparison of the FEA results with deformation behavior and SCC location on the disk specimen after RDCT, the most proper FE model was found to be the tetrahedron model.

Deterministic Fracture Mechanics Analysis of Nuclear Reactor Pressure Vessel Under Rot Leg Leak Accident (고온관 누설에 의한 가압열충격 사고시 원자로 용기의 건전성 평가를 위한 결정론적 파괴역학 해석)

  • Lee, Sang-Min;Choi, Jae-Boong;Kim, Young-Jin;Park, Youn-Won;Jhung, Myung-Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2219-2227
    • /
    • 2002
  • In a nuclear power plant, reactor pressure vessel (RPV) is the primary pressure boundary component that must be protected against failure. The neutron irradiation on RPV in the beltline region, however, tends to cause localized damage accumulation, leading to crack initiation and propagation which raises RPV integrity issues. The objective of this paper is to estimate the integrity of RPV under hot leg leaking accident by applying the finite element analysis. In this paper, a parametric study was performed for various crack configurations based on 3-dimensional finite element models. The crack configuration, the crack orientation, the crack aspect ratio and the clad thickness were considered in the parametric study. The effect of these parameters on the maximum allowable nil-ductility transition reference temperature ($(RT_{NDT})$) was investigated on the basis of finite element analyses.

Development of Customizing Program for Finite Element Analysis of Pressure Vessel (압력 용기 유한 요소 해석 프로그램 개발)

  • Jeon, Yoon-Cheol;Kim, Tae-Woan
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.654-659
    • /
    • 2003
  • PVAP (Pressure Vessel Analysis Program V1.0) was developed by adopting the finite element analysis program ANSYS V6.0, and Microsoft Visual Basic V6.0 was also utilized for the interfacing and handling of input and output data during the analysis. PVAP offers the end user the ability to design and analyze vessels in strict accordance with ASME Section VIII, Division 2. More importantly, the user is not required to make any design decisions during the input of the vessel. PVAP consists of three analysis modules for the finite element analysis of the primary components of pressure vessel such as head, shell, nozzle, and skirt. In each module, finite element analysis can be performed automatically only if the end user gives the dimension of the vessel. Furthermore, the calculated results are compared and evaluated in accordance with the criteria given in ASME Boiler and Pressure Vessel Code, Section VIII, Division 2. In particular, heat transfer analysis and consecutive thermal stress analysis for the junction between skirt and head can be carried out automatically in the skirt-tohead module. Finally, report including the above results is created automatically in Microsoft Word format.

  • PDF