과거 주가 데이터와 금융 관련 빅 데이터를 사용해 머신러닝 기법으로 주식시장을 예측하는 연구는 다양하게 있어 왔지만, HTS와 MTS를 통해 거래가 가능한 주가지수 연동 ETF가 생기면서 주가지수를 예측하는 연구가 최근 주목받고 있다. 본 논문에서는 KOSPI 연동 ETF를 거래할 목적으로 KOSPI의 상승 예측을 위한 머신러닝 모델과 하락예측을 위한 모델을 각각 구현한다. 이들 모델은 매개변수의 그리드 탐색을 통해 최적화 된다. 또한 정밀도를 개선해 ETF 거래 수익률을 높일 수 있도록 개별 모델들을 조합한 하이브리드 머신러닝 모델을 제안한다. 예측 모델의 성능은 정확도와 ETF 거래 수익률에 큰 영향을 미치는 정밀도로 평가된다. 하이브리드 상승 예측 모델의 정확도와 정밀도는 72.1 %와 63.8 %이고 하락 예측 모델은 79.8 %와 64.3 %이다. 하이브리드 하락 예측 모델에서 정밀도는 개별 모델보다 최소 14.3 %, 최대 20.5 % 개선되었다. 테스트 기간에 하이브리드 모델은 하락에서 10.49 %, 상승에서 25.91 %의 ETF 거래 수익률을 보였다. 인버스×2와 레버리지 ETF로 거래하면 수익률을 1.5 ~ 2배로 높일 수 있다. 하락예측 머신러닝 모델에 대한 추가 연구로 수익률을 더 높일 수 있을 것으로 기대한다.
본 연구에서는 한국과 미국의 대표적인 거래소인 빗썸과 코인베이스의 비트코인 가격을 ARIMA와 순환 신경망(Recurrent Neural Network)을 이용해 예측하고, 이후 각 국가의 뉴스 기사를 이용해 분리 학습에 기반한 separated RNN 모형을 제안한다. separated RNN 모형은 학습 데이터를 가격의 추세 변화 점을 기준으로 분리해 학습시킨 후, 추세 변화점 별 뉴스 데이터를 활용해 용어 기반 사전을 구축한다. 이후 용어 기반 사전과 평가 데이터 기간의 뉴스 데이터를 이용해 예측할 데이터의 가격 추세 변화 점을 찾아낸 후, 매칭되는 모형을 적용해 예측 결과를 산출한다. 2017년 5월 22일부터 2020년 9월 16일까지의 가격 데이터를 사용해 분석한 결과, 제안된 separated RNN을 이용해 예측한 결과가 한국과 미국의 비트코인 가격 예측 모두에서 순환 신경망(RNN)을 이용해 예측한 결과보다 높은 예측 성과를 보였다. 본 연구는 시계열 예측 기법의 한계를 뉴스 데이터를 이용한 추세 변화 점 탐색을 통해 극복할 수 있고, 성과 향상을 위한 추후 다양한 시계열 예측 기법 및 추세 변화 점 탐색을 위한 다양한 텍스트 마이닝 기법을 적용해볼 필요가 있음을 시사한다.
본 연구는 공주지역의 지표변화를 분석하기 위해 우도비 기반의 베이지안 예측모델을 이용하여 지리공간 정보와 지표변화와의 연관성 및 미래의 지표변화를 탐지하였다. 지표변화 지역은 위성사진을 토지피복분류 한 후 선분류 후비교법을 이용하여 변화지역을 추출하였다. 지표변화와 관련이 있는 지리공간 정보는 GIS 환경에서 구축하였으며, 우도비를 이용하여 지표변화 예측도를 작성하였다. 분석결과, 도시지역 및 농업지역 지표변화에 가장 큰 영향을 미치는 주제도는 고도, 하계망, 인구밀도, 도로, 인구이동, 총사업체수, 지가 등이다. 또한 산림지역 지표변화에 영향을 미치는 주제도는 고도, 경사도, 인구밀도, 인구이동, 지가 등이다. 지표변화 분석결과, 도시지역은 금강을 중심으로 구도심과 신도심지역의 도시 확산이 이루어지고, 인터체인지 및 국도를 따라 시가화 지역이 확산 될 것으로 예측되었다. 농업지역은 금강의 소지류 및 인접지역과 연결되는 국도주변 지역이 변화가 일어날 확률이 높다. 산림지역은 대부분 남동쪽에 위치하고 있는데, 그 원인은 밤나무 재배단지가 본 지역에 넓게 나타나면서 산림훼손이 일어날 확률이 높은 것으로 예측되었다. 예측비율 곡선을 이용하여 검증한 결과, 지표변화가 일어날 확률이 가장 높은 상위 $10\%$지역에서 도시지역은 $80\%$, 농업지역은 $55\%$, 산림지역은 $40\%$정도의 예측능력을 보였다. 따라서, 본 통합 모델은 산림지역 예측에는 부적합한 것으로 볼 수 있어서, 향후 새로운 주제도 선정 및 예측모델 등이 필요하다. 결론적으로 본 방법은 향후 토지피복 변화 연구를 위한 효과적인 방법 중의 하나로 적용될 수 있을 것으로 기대된다.
부동산의 시장 참여자들에게 부동산 가격에 대한 방향성을 예측하는 것은 의사결정에 있어서 매우 중요하다. 이를 위해 주로 회귀분석, ARIMA, VAR 등의 방법론을 사용하는데 이는 불특정 변수에 의해서 변동하는 자산의 가치를 예측하는데 한계점을 갖는다. 때문에 본 연구에서는 이를 보완하기 위해서 인공신경망 기법을 이용해 부동산 시장에서 유동성이 풍부한 서울 아파트 가격 추이를 예측하고자 한다. 인공신경망 학습을 위해서 총 12개의 거시 및 미시적 변수를 나눠 학습 모형을 설계하는데 거시적 요인은 CASE1, 미시적 요인은 CASE2 그리고 두 요인을 조합해서 요인을 구성한 CASE3 으로 나눠서 실험한다. 그 결과 CASE1 과 CASE2 는 약 2년 동안 87.5%의 예측을 보이고 CASE3은 95.8%의 예측성과를 보인다. 본 연구는 아파트 가격에 영향을 주는 다양한 요인들을 거시적 및 미시적으로 구분하여 정의하고 미래의 아파트 가격의 방향성을 예측하는데 인공신경망 기법을 제안하고 그 실효성을 분석했다. 따라서 최근 발전하고 있는 학습 기법이 부동산 분야에 다양한 관점으로 적용되어 시장 참여자들의 효율적인 의사결정을 할 수 있기를 기대한다.
An intelligent system embedded with multiple sources of knowledge may provide more robust intelligence with highly ill structured problems than the system with a single source of knowledge. This paper proposes the hybrid knowledge integration mechanism that yields the cooperated knowledge by integrating expert, user, and machine knowledge within the fuzzy logic-driven framework, and then refines it with a genetic algorithm (GA) to enhance the reasoning performance. The proposed knowledge integration mechanism is applied for the prediction of Korea stock price index (KOSPI). Empirical results show that the proposed mechanism can make an intelligent system with the more adaptable and robust intelligence.
Finite element method is very effective method to simulate the forming processes with good prediction of the deformation behaviour. For the finite element modeling of sheet mental forming the accurate tool model is required. Due to the geometrical complexity of real-size part stamping tools it is hard to make FE model for real-size auto-body stamping parts. In this paper, it was focussed on the drawability factors on auto-body panel stamping by AUTOFORM with using tool planning alloy to reduce law price as well as high precision from Design Optimization of die. According to this study, the results of simulation will give engineers good information to access the Design Optimization of die.
An intelligent system embedded with multiple sources of knowledge may provide more robust intelligence with highly ill structured problems than the system with a single source of knowledge. This paper proposes th hybrid knowledge integration mechanism that yields the cooperated knowledge by integrating expert, user, and machine knowledge within the fuzzy logic-driven framework, and then refines it with a genetic algorithm (GA) to enhance the reasoning performance. The proposed knowledge integration mechanism is applied for the prediction of Korea stock price index (KOSPI). Empirical results show that the proposed mechanism can make an intelligent system with the more adaptable and robust intelligence.
This study systematized synthetically to use internet GIS and real estate appraisal method in computing system for the real estate decision. First, indicated the method of using GIS and databases to appraise the real estate by using the cost approach. Second, used the artificial neural network to predict the change of land prices and the artificial neural network convinced us that it indicates easily the result of land prices without complicated processes. Third, examined land prices using the artificial neural network but there is limits for the land price prediction because of difficult data gathering. also, this study may heighten information levels of the real estate field according to 21th century information level if use actively a internet, information users who should pay much moneys in existent real estate decisions may can approach easily.
The paper proposes a quantitative causal ordering map (QCOM) to combine qualitative and quantitative methods in a framework. The procedures for developing QCOM consist of three phases. The first phase is to collect partially known causal dependencies from experts and to convert them into relations and causal nodes of a model graph. The second phase is to find the global causal structure by tracing causality among relation and causal nodes and to represent it in causal ordering graph with signed coefficient. Causal ordering graph is converted into QCOM by assigning regression coefficient estimated from path analysis in the third phase. Experiments with the prediction model of Korea stock price show results as following; First, the QCOM can support the design of qualitative and quantitative model by finding the global causal structure from partially known causal dependencies. Second, the QCOM can be used as an integration tool of qualitative and quantitative model to offerhigher explanatory capability and quantitative measurability. The QCOM with static and dynamic analysis is applied to investigate the changes in factors involved in the model at present as well discrete times in the future.
한국시뮬레이션학회 2001년도 The Seoul International Simulation Conference
/
pp.313-317
/
2001
The approach to predict time series without neglecting the fluctuation in a short period is tried by using a digital FIR filter and a neural network. The differential waveform of the Nikkei average closing price is filtered by the FIR band-pass filter of 101 length. It is filtered into the five frequency bands of 0-1Hz, 1-2Hz, 2-3Hz, 3-4Hz and 4-5Hz by setting the sampling frequency 10Hz. The each filtered waveform is learned and forecasted by the neural network. The neural network of the back propagation method is adopted in the learning the waveform. By inputting the data of 20 days in the past, the prediction of 10 days ahead is carried out. After learning the time series of each frequency band by the neural network, the predicted data far each frequency band are obtained. The predicted waveforms of each frequency band are synthesized to obtain a final forecast. The waveform can be forecasted well as a whole.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.